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 Directed Graphs Basics 
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• A directed graph (or digraph) or oriented graph is called a graph

𝐷 (𝑉, 𝐴) consisting of a non-empty set of vertices 𝑉 and a set 𝐴 of ordered

pairs of vertices called arcs.

• In an arc (𝑣, 𝑤 ) the vertices 𝑣 and 𝑤 are called tail and head, or,

source and sink, respectively.

• In-neighborhood of a vertex 𝑣 is the sum of u vertices defined as:

𝑁−(𝑣) = 𝑢 ∈ V 𝑁 𝑢, 𝑣 ∈ A(𝐷)}

• Out-neighborhood of a vertex v is the sum of u vertices defined as:

𝑁+(𝑣) = 𝑢 ∈ V 𝑁 𝑣, 𝑢 ∈ A(𝐷)}

• In-degree of a vertex 𝑣, 𝑑− 𝑣 , is the number of arcs having 𝑣 as head.

𝑑− 𝑣 = |𝑁−(𝑣)|

• Out-degree of a peak 𝑣, 𝑑+(𝑣), is the number of arcs having 𝑣 as tail.

𝑑+ 𝑣 = |𝑁+(𝑣)|
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• A directed graph (or digraph) or oriented graph is called a graph

𝐷 (𝑉, 𝐴) consisting of a non-empty set of vertices 𝑉 and a set 𝐴 of ordered

pairs of vertices called arcs.

• The minimum and maximum in-degree of a graph are denoted by

𝑑−(𝐺) and 𝑑−( 𝐺), respectively, and the minimum and maximum out-degree

of a graph are denoted by 𝑑+(𝐺) and 𝐷+(𝐺).

• A digraph is called balanced, or pseudosymmetric, or isograph, if for

each vertex 𝑣 it holds: 𝑑− 𝑣 = 𝑑+ 𝑣 , or equivalently , 𝑁− 𝑣 = 𝑁+ 𝑣 .

Handshake Lemma for Directed Graphs

For each directed graph it holds the equation:

 

𝑖=1

𝑛

𝑑− 𝑣 = 

𝑖=1

𝑛

𝑑+ 𝑣
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• A directed graph (or digraph) or oriented graph is called a graph

𝐷 (𝑉, 𝐴) consisting of a non-empty set of vertices 𝑉 and a set 𝐴 of ordered

pairs of vertices called arcs.

• The minimum and maximum in-degree of a graph are denoted by

𝑑−(𝐺) and 𝑑−( 𝐺), respectively, and the minimum and maximum out-degree

of a graph are denoted by 𝑑+(𝐺) and 𝐷+(𝐺).

• A digraph is called balanced, or pseudosymmetric, or isograph, if for

each vertex 𝑣 it holds: 𝑑− 𝑣 = 𝑑+ 𝑣 , or equivalently , 𝑁− 𝑣 = 𝑁+ 𝑣 .

• A digraph is called simple if no loops and parallel arcs are permitted

• If in a digraph loops are allowed, but parallel/multiple arcs are not allowed

then the graph is called asymmetric or antisymmetric.

• A digraph is called symmetric if for each arc (𝑢, 𝑤) there exist an arc (𝑤, 𝑢).

• A complete asymmetric graph without loops called tournament.
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• A directed graph (or digraph) or oriented graph is called a graph

𝐷 (𝑉, 𝐴) consisting of a non-empty set of vertices 𝑉 and a set 𝐴 of ordered

pairs of vertices called arcs.

• The minimum and maximum in-degree of a graph are denoted by

𝑑−(𝐺) and 𝑑−( 𝐺), respectively, and the minimum and maximum out-degree

of a graph are denoted by 𝑑+(𝐺) and 𝐷+(𝐺).

• A graph is called underlying if it results from a digraph by replacing its arcs

with undirected edges.

• The converse of a digraph is obtained by inverting the direction of its arcs.

• A complete digraph is the graph where every pair of vertices is joined by a

unique arc.
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• A dirgraph 𝐷 is weakly connected, if the corresponding underlying graph is

connected.

• A dirgraph 𝐷 is unilateral, if any two vertices 𝑣 and 𝑤 are connected with

an oriented path (𝑣, 𝑤) OR an oriented path (𝑤, 𝑣)
• A dirgraph 𝐷 is strongly connected, if any two vertices 𝑣 and 𝑤 are

connected with an oriented path (𝑣, 𝑤) AND an oriented path (𝑤, 𝑣)
• If a dirgraph 𝐷 is strongly connected or unilateral, then it holds that 𝐷 is also

weakly connected, obviously the opposite does not hold.

• A connected (non-directed) graph 𝐺 is called orientable if its edges can be

oriented, so that the corresponding digraph 𝐷 to be strongly connected.

• Theorem 1:

A connected graph is orientable iff each of its edges is contained in

at least one cycle.
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• A dirgraph 𝐷 is weakly connected, if the corresponding underlying graph is

connected.

• A dirgraph 𝐷 is unilateral, if any two vertices 𝑣 and 𝑤 are connected with

an oriented path (𝑣, 𝑤) OR an oriented path (𝑤, 𝑣)
• A dirgraph 𝐷 is strongly connected, if any two vertices 𝑣 and 𝑤 are

connected with an oriented path (𝑣, 𝑤) AND an oriented path (𝑤, 𝑣)
• If a dirgraph 𝐷 is strongly connected or unilateral, then it holds that 𝐷 is also

weakly connected, obviously the opposite does not hold.

• A connected (non-directed) graph 𝐺 is called orientable if its edges can be

oriented, so that the corresponding digraph 𝐷 to be strongly connected.

• Theorem 1:

A connected graph is orientable iff each of its edges is contained in

at least one cycle.

Robbins 1939: A graph is orientable iff it is connected and has no bridge.
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• A dirgraph 𝐷 is weakly connected, if the corresponding underlying graph is

connected.

• A dirgraph 𝐷 is unilateral, if any two vertices 𝑣 and 𝑤 are connected with

an oriented path (𝑣, 𝑤) OR an oriented path (𝑤, 𝑣)
• A dirgraph 𝐷 is strongly connected, if any two vertices 𝑣 and 𝑤 are

connected with an oriented path (𝑣, 𝑤) AND an oriented path (𝑤, 𝑣)
• If a dirgraph 𝐷 is strongly connected or unilateral, then it holds that 𝐷 is also

weakly connected, obviously the opposite does not hold.

• A connected (non-directed) graph 𝐺 is called orientable if its edges can be

oriented, so that the corresponding digraph 𝐷 to be strongly connected.

• Theorem 2 (Ryser 1957, Fulkerson 1965):

A sequence of unordered pairs of non-negative integers

𝑆: (𝑑1
−, 𝑑1
−), (𝑑2

−, 𝑑2
+, ), … , (𝑑𝑛

−, 𝑑𝑛
+), where 𝑑1

− ≥ 𝑑2
− ≥ ⋯ ,≥ 𝑑𝑛

−, is graphical and

corresponds to a directed a directed graph iff for each integer 𝑘 there holds

the relations: 𝑑𝑛
− ≤ 𝑛 − 1, 𝑑𝑛

+ ≤ 𝑛 − 1 and  𝑖=1
𝑛 𝑑𝑖

− =  𝑖=1
𝑛 𝑑𝑖

+ ,

while for 1 ≤ 𝑗 ≤ 𝑛 it holds:

 𝑘=1
𝑛 𝑑𝑘

− ≤  𝑘=1
𝑗
min(𝑗 − 1, 𝑑𝑘

+) + 𝑘=𝑗+1
𝑛 min(𝑗, 𝑑𝑘

+).
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• Complete directed graph is the graph where each pair of vertices are joined by

a unique arc, where a complete asymmetric graph with no loops is a

tournament graph. The out-degrees are also referred as score.

m = 𝑛
2
= 𝑛 𝑛 − 1 /2 =  𝑣∈𝑉 𝑑

− 𝑣 =  𝑣∈𝑉 𝑑
+ 𝑣

• Theorem 3:

Let 𝑣 be a vertex with maximum out-degree in a tournament graph.

The distance from this vertex to any other vertex is 1 or 2.

o Suppose that vertex 𝑣 has a maximum out-degree 𝑑+(𝑣) = 𝑘 and suppose

that it is adjacent to vertices 𝑣1, 𝑣2, … , 𝑣𝑘.
o Thus, the distance of 𝑣 to these vertices is 𝑑𝑖𝑠𝑡 𝑣, 𝑣𝑖 = 1, ∀ 1 ≤ 𝑖 ≤ 𝑘.
o In addition, 𝑣 is adjacent to the remaining 𝑛 – 𝑘 – 1 vertices, that we

denote as 𝑢1, 𝑢2, … , 𝑢_(𝑛 − 𝑘 − 1).
o It must be shown that 𝑑𝑖𝑠𝑡 (𝑣, 𝑢𝑖) = 2, ∀ 1 ≤ 𝑖 ≤ 𝑛 – 𝑘 – 1.
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• Complete directed graph is the graph where each pair of vertices are joined by

a unique arc, where a complete asymmetric graph with no loops is a

tournament graph. The out-degrees are also referred as score.

m = 𝑛
2
= 𝑛 𝑛 − 1 /2 =  𝑣∈𝑉 𝑑

− 𝑣 =  𝑣∈𝑉 𝑑
+ 𝑣

• Theorem 3:

Let 𝑣 be a vertex with maximum out-degree in a tournament graph.

The distance from this vertex to any other vertex is 1 or 2.

o If every vertex 𝑢𝑖 (1 ≤ 𝑖 ≤ 𝑛 – 𝑘 – 1) is adjacent (𝑑𝑖𝑠𝑡 (𝑣𝑗 , 𝑢𝑖) = 1) to

some vertex 𝑣𝑗 (1 ≤ 𝑗 ≤ 𝑘), then the proposition holds.

o Suppose some top 𝑢𝑙 (1 ≤ 𝑙 ≤ 𝑛– 𝑘– 1) is not adjacent to any vertex 𝑣𝑖.
o Then 𝑢 is adjacent to all peaks 𝑣1, 𝑣2, … , 𝑣𝑘 and is also adjacent to 𝑣.
o But then 𝑑+ 𝑢𝑙 = 𝑘 + 1 would be inappropriate because then 𝑢 would

have a greater degree outside of 𝑣.
o Thus, every vertex 𝑢𝑙 is adjacent to some vertex 𝑣𝑖.
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• Complete directed graph is the graph where each pair of vertices are joined by

a unique arc, where a complete asymmetric graph with no loops is a

tournament graph. The out-degrees are also referred as score.

m = 𝑛
2
= 𝑛 𝑛 − 1 /2 =  𝑣∈𝑉 𝑑

− 𝑣 =  𝑣∈𝑉 𝑑
+ 𝑣

• A tournament graph is called a transitive if it has the transitive orientation

property, i.e., for each pair of arcs (𝑎, 𝑏), (𝑏, 𝑐) there exist an arc (𝑎, 𝑐).
[Transitive Triplets and Cyclic Triplets]

• Theorem 4:

A tournament graph is transitive iff it is contains no cycles.

(⇒)

o Let 𝑇 a tournament graph of 𝑛 vertices.

o Let us assume that 𝑇 contains cycles 𝐶 = 𝑥1, 𝑥2, … , 𝑥𝑟 , 𝑥1 : 𝑟 ≥ 3.
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 Tournament Graphs 
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• Complete directed graph is the graph where each pair of vertices are joined by

a unique arc, where a complete asymmetric graph with no loops is a

tournament graph. The out-degrees are also referred as score.

m = 𝑛
2
= 𝑛 𝑛 − 1 /2 =  𝑣∈𝑉 𝑑

− 𝑣 =  𝑣∈𝑉 𝑑
+ 𝑣

• A tournament graph is called a transitive if it has the transitive orientation

property, i.e., for each pair of arcs (𝑎, 𝑏), (𝑏, 𝑐) there exist an arc (𝑎, 𝑐).
[Transitive Triplets and Cyclic Triplets]

• Theorem 4:

A tournament graph is transitive iff it is contains no cycles.

(⇒)

o Since there exist the arcs (𝑥1, 𝑥2) and (𝑥2, 𝑥3) due to transitive orientation

property there should also exist the arc (𝑥1, 𝑥3).
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• Complete directed graph is the graph where each pair of vertices are joined by

a unique arc, where a complete asymmetric graph with no loops is a

tournament graph. The out-degrees are also referred as score.

m = 𝑛
2
= 𝑛 𝑛 − 1 /2 =  𝑣∈𝑉 𝑑

− 𝑣 =  𝑣∈𝑉 𝑑
+ 𝑣

• A tournament graph is called a transitive if it has the transitive orientation

property, i.e., for each pair of arcs (𝑎, 𝑏), (𝑏, 𝑐) there exist an arc (𝑎, 𝑐).
[Transitive Triplets and Cyclic Triplets]

• Theorem 4:

A tournament graph is transitive iff it is contains no cycles.

(⇒)

o Similarly, it is implied that there should also exist the arcs

𝑥1, 𝑥4 , … (𝑥1, 𝑥𝑟).
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• Complete directed graph is the graph where each pair of vertices are joined by

a unique arc, where a complete asymmetric graph with no loops is a

tournament graph. The out-degrees are also referred as score.

m = 𝑛
2
= 𝑛 𝑛 − 1 /2 =  𝑣∈𝑉 𝑑

− 𝑣 =  𝑣∈𝑉 𝑑
+ 𝑣

• A tournament graph is called a transitive if it has the transitive orientation

property, i.e., for each pair of arcs (𝑎, 𝑏), (𝑏, 𝑐) there exist an arc (𝑎, 𝑐).
[Transitive Triplets and Cyclic Triplets]

• Theorem 4:

A tournament graph is transitive iff it is contains no cycles.

(⇒)

o However, it is a contradiction since there also exist the arc (𝑥𝑟 , 𝑥1).
o Thus, 𝑇 should contain no cycle.
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• Complete directed graph is the graph where each pair of vertices are joined by

a unique arc, where a complete asymmetric graph with no loops is a

tournament graph. The out-degrees are also referred as score.

m = 𝑛
2
= 𝑛 𝑛 − 1 /2 =  𝑣∈𝑉 𝑑

− 𝑣 =  𝑣∈𝑉 𝑑
+ 𝑣

• A tournament graph is called a transitive if it has the transitive orientation

property, i.e., for each pair of arcs (𝑎, 𝑏), (𝑏, 𝑐) there exist an arc (𝑎, 𝑐).
[Transitive Triplets and Cyclic Triplets]

• Theorem 4:

A tournament graph is transitive iff it is contains no cycles.

(⇐)

o Let us assume that 𝑇 is an acyclic tournament graph and that there exist the

arcs (𝑥1, 𝑥2) and (𝑥2, 𝑥3).
o Since 𝑇 contains no cycle it is implied that there does not exist arc (𝑥3, 𝑥1)
o Thus, there exist arc (𝑥1, 𝑥3) and the graph is transitive.
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• Complete directed graph is the graph where each pair of vertices are joined by

a unique arc, where a complete asymmetric graph with no loops is a

tournament graph. The out-degrees are also referred as score.

m = 𝑛
2
= 𝑛 𝑛 − 1 /2 =  𝑣∈𝑉 𝑑

− 𝑣 =  𝑣∈𝑉 𝑑
+ 𝑣

• A tournament graph is called a transitive if it has the transitive orientation

property, i.e., for each pair of arcs (𝑎, 𝑏), (𝑏, 𝑐) there exist an arc (𝑎, 𝑐).
[Transitive Triplets and Cyclic Triplets]

• Theorem 5:

A non-decreasing sequence 𝑆 of 𝑛 non negative integers is graphical score

sequence of a transitive tournament graph iff 𝑆 is : 0,1,2, … , 𝑛 − 1
( ⇒ )

o Let a tournament graph 𝑇(𝑉, 𝐴), ∶ 𝑉 = {𝑥1, 𝑥2, … , 𝑥𝑛} and 

𝐴 = { 𝑥𝑖 , 𝑥𝑗 : 1 ≤ j < 𝑖 ≤ n}.

o Then, for each vertex it holds that 𝑑+ 𝑥𝑖 = 𝑖 − 1 1 ≤ i ≤ n ,
and hence 𝑇 is transitive and has S as score sequence.
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• Complete directed graph is the graph where each pair of vertices are joined by

a unique arc, where a complete asymmetric graph with no loops is a

tournament graph. The out-degrees are also referred as score.

m = 𝑛
2
= 𝑛 𝑛 − 1 /2 =  𝑣∈𝑉 𝑑

− 𝑣 =  𝑣∈𝑉 𝑑
+ 𝑣

• A tournament graph is called a transitive if it has the transitive orientation

property, i.e., for each pair of arcs (𝑎, 𝑏), (𝑏, 𝑐) there exist an arc (𝑎, 𝑐).
[Transitive Triplets and Cyclic Triplets]

• Theorem 5:

A non-decreasing sequence 𝑆 of 𝑛 non negative integers is graphical score

sequence of a transitive tournament graph iff 𝑆 is : 0,1,2, … , 𝑛 − 1
(⇐ )

o Let us assume that tournament graph 𝑇 of 𝑛 vertices is transitive

o It is sufficient to prove that there do not exist two vertices with the same 

score. 
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• Complete directed graph is the graph where each pair of vertices are joined by

a unique arc, where a complete asymmetric graph with no loops is a

tournament graph. The out-degrees are also referred as score.

m = 𝑛
2
= 𝑛 𝑛 − 1 /2 =  𝑣∈𝑉 𝑑

− 𝑣 =  𝑣∈𝑉 𝑑
+ 𝑣

• A tournament graph is called a transitive if it has the transitive orientation

property, i.e., for each pair of arcs (𝑎, 𝑏), (𝑏, 𝑐) there exist an arc (𝑎, 𝑐).
[Transitive Triplets and Cyclic Triplets]

• Theorem 5:

A non-decreasing sequence 𝑆 of 𝑛 non negative integers is graphical score

sequence of a transitive tournament graph iff 𝑆 is : 0,1,2, … , 𝑛 − 1
(⇐ )

o Let us assume that there exist the arc 𝑥𝑖 , 𝑥𝑗 and let the set 𝑁+(𝑥𝑗).

o Since there exist the arc 𝑥𝑖 , 𝑥𝑗 and the exist arc (𝑥𝑗 , 𝑥𝑘) for each vertex 

𝑥𝑘 ∈ 𝑁
+ 𝑥𝑗 , it is implied that there exist arc 𝑥𝑖 , 𝑥𝑘 .
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• Complete directed graph is the graph where each pair of vertices are joined by

a unique arc, where a complete asymmetric graph with no loops is a

tournament graph. The out-degrees are also referred as score.

m = 𝑛
2
= 𝑛 𝑛 − 1 /2 =  𝑣∈𝑉 𝑑

− 𝑣 =  𝑣∈𝑉 𝑑
+ 𝑣

• A tournament graph is called a transitive if it has the transitive orientation

property, i.e., for each pair of arcs (𝑎, 𝑏), (𝑏, 𝑐) there exist an arc (𝑎, 𝑐).
[Transitive Triplets and Cyclic Triplets]

• Theorem 6:

A non-decreasing sequence of 𝑛 non negative integers

𝑆: 𝑑1, 𝑑2, … , 𝑑𝑑𝑛 , 𝑑𝑑𝑛+1 − 1,… , 𝑑𝑛−1 − 1 is a graphical sequence of scores.

• Theorem 7 (H.G. Landau 1953):

A non-decreasing sequence of  𝑛 non negative integers 𝑆: 𝑑1, 𝑑2, … , 𝑑𝑛 is a 

graphical sequence of  scores iff for each integer 𝑗 (1 ≤ j ≤ n) it holds: 

 𝑖=1
𝑗
𝑑𝑖 ≥

𝑗
2

, where the equality holds for 𝑗 = 𝑛.
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• A path in a digraph between two vertices 𝑠 and 𝑡 is a sequence of vertices

such that for any consecutive pair of vertices 𝑢 and 𝑣 to exist the arc (𝑢, 𝑣)
(forward-arc) or the arc (𝑣, 𝑢) (backward arc).

• A directed path is consisted only by forward arc

• A connected digraph 𝐷 is Eulerian if there exist a directed circuit containing

each arc of 𝐷.

• In order for a digraph 𝐷 to be Eulerian it must:

o be strongly connected

o not contain sources and sinks, i.e., to not contain vertices with in-(resp. out-)

degree equal to 0.

• If the graph is unilateral and does not contain sources or sinks, then it

contains an open Eulerian trace.
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• Theorem 8 (Ghouila-Houri, 1960):

A strongly connected digraph is Eulerian iff it is balanced.

• Corollary:

A strongly connected digraph has an Eulerian trace if there exist two vertices

𝑣 and 𝑢 such that 𝑑−(𝑣) = 𝑑+(𝑣) + 1 and 𝑑−(𝑢) = 𝑑+(𝑢) + 1, while for

any other vertex 𝑤 it holds 𝑑−(𝑤) = 𝑑+(𝑤).

• A connected digraph 𝐷 is Hamiltonian (resp. semi-Hamiltonian), if there exist

a directed cycle (resp. path) containing every vertex of 𝐷.

• Theorem 9:

A strongly connected digraph 𝐷 of 𝑛 vertices is Hamiltonian if 𝑑− 𝑣 ≥
𝑛

2

and 𝑑+ 𝑣 ≥
𝑛

2
for each vertex 𝑣 ∈ 𝑉(𝐷)
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• Theorem 10 (Redei, 1934):

Every tournament graph has a Hamiltonian path, i.e., it is semi-Hamiltonian

• Theorem 11 (Harray and Moser, 1966):

Every strongly connected tournament graph of 𝑛 ≥ 3 vertices has cycles of

length 𝑙 = 3,4, … , 𝑛 (i.e., it is Hamiltonian)

• Theorem 12 (Roy, 1967 and Gallai, 1968):

A digraph 𝐷 contains directed path of length 𝑥 − 1.

• Corrolary:

Every tournament graph has a Hamiltonian path.
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• The DFS algorithm is similar to directed graphs except that produced edges

are classified into 4 sets:

o The set T of the edges contained in the trees of the forest and are called

tree-edges.

o The set B of the edges called back-edges and join descendant vertices to

their ancestors.

o The set F of the edges called forward-edges and join ancestral vertices

to their descendant .

o The C set of edges called cross-edges and have no ancestor-descendant

relationship
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• Theorem 13:

If during the depth first search of a directed graph a cross-edge (𝑢, 𝑣)
is produced, then it holds: 𝑑𝑓𝑖(𝑢) > 𝑑𝑖𝑓(𝑣)

o Suppose 𝑑𝑓𝑖 (𝑢) < 𝑑𝑓𝑖 (𝑣), visiting vertex 𝑢 before vertex 𝑣.
o If we assign value in 𝑑𝑓𝑖 (𝑣) when following the edge (𝑢, 𝑣), then the

edge (𝑢, 𝑣) is a tree-edge.

o Otherwise we visit vertex 𝑣 as the descendant of vertex 𝑢, but not as her

son.

o Thus, the edge (𝑢, 𝑣) can not be a cross-edge and therefore we coclude

to the contradiction.
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• Measuring Strong Connectivity deploying DFS:

In order to measure the strong connectivity of a digraph we should deploy

two times the DFS algorithm starting from an arbitrary vertex..

o The first time for each vertex 𝑣 check the unmarked neighboring vertices

where v is joined only through outgoing arcs.

o The second time, for each vertex 𝑣 we check the unmarked neighboring

vertices where v is joined only through incoming arcs.

o In order for the graph to be strongly connected, all the vertices there

should be visited in both applications (first and second time) of the

algorithm.
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• A digraph is acyclic if it does not contain directed circles.

• If during the construction of the DFS tree back-edges are resulting, then we

conclude that the graph has a cycle. Conversely, if there is no back-edge the

graph is acyclic.

• Theorem 13:

If  the edge (𝑢, 𝑣) is a back-edge, then it easily results that the graph has a cycle 

regarding the path from vertex 𝑣 to vertex 𝑢.

o Let that there exist the cycle (𝑣1 → 𝑣2 → ⋯ 𝑣𝑘 → 𝑣1).
o Let us assume that we first meet the vertex 𝑣𝑖 , with the min 𝑑𝑓𝑖 value.

o Next, we visit the vertices that have greater 𝑑𝑓𝑖 values.

o This way, we will meet the vertex 𝑣𝑖−1 that leads to vertex 𝑣𝑖 , i.e., to a    

predecessor of  𝑣𝑖 , that means that it is a back-edge.
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• A digraph is acyclic if it does not contain directed circles.

• If during the construction of the DFS tree back-edges are resulting, then we

conclude that the graph has a cycle. Conversely, if there is no back-edge the

graph is acyclic.

• Topological sorting (or, topological order) of Directed Acyclic Graph is an

arrangement the vertices of the grpah such that if the graph 𝐺 contains the

arc (𝑣, 𝑤), then vertex 𝑣 appears before vertex 𝑤 in the topological order.

• A topological order of 𝐺 is an arrangement of its vertices (𝑣1, 𝑣2, … , 𝑣𝑛):

∀ (𝑣𝑖 , 𝑣𝑗) ∈ 𝐺 →𝑖 < 𝑗 .

DIRECTED GRAPHS



 Topological Sorting

29

• A digraph is acyclic if it does not contain directed circles.

• If during the construction of the DFS tree back-edges are resulting, then we

conclude that the graph has a cycle. Conversely, if there is no back-edge the

graph is acyclic.

• Topological sorting (or, topological order) of Directed Acyclic Graph is an

arrangement the vertices of the grpah such that if the graph 𝐺 contains the

arc (𝑣, 𝑤), then vertex 𝑣 appears before vertex 𝑤 in the topological order.

• Algorithm Topological Order with DFS

Input: A DAG 𝐷(𝑉, 𝐸)
Output: Linearization of the vertices of 𝐷
1. Apply DFS on DAG 𝐷
2. Set to each vertex the value 𝑝𝑜𝑠𝑡 during their extraction from the stack

3. Sort in descending order the 𝑝𝑜𝑠𝑡 values.

.
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• Kosaraju Algorithm for Discovering Strongly Connected Components.

Given a directed graph 𝐷

1. Apply DFS enumerating the vertices one-by-one with post values.

2. Construct the directed graph 𝐷’ inverting the directions of the arcs of 𝐷

3. Apply DFS on 𝐷’ starting from the vertex with the max 𝑝𝑜𝑠𝑡 value.

[if the graph has n vertices then start from the vertex with 𝑝𝑜𝑠𝑡 value =𝑛]

4. Perform a second DFS pass exhausting the graph

5. Every tree in the resulting DFS forest is a Strongly Connected Component

.
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• Kosaraju Algorithm for Discovering Strongly Connected Components.

• Algorithm Kosaraju

Input: A digraph 𝐷(𝑉, 𝐸)
Output: The strongly connected components of 𝐷
1. Let 𝑆 an empty stack.

2. While 𝑆 does not contain all the vertices

1. Perform 𝐷𝐹𝑆 starting from an arbitrary vertex 𝑣 ∉ 𝑆
2. 𝑃𝑢𝑠ℎ (the final vertex 𝑢 (alongside with all the previous vertices by visit-

order)).

3. 𝐷’ ← the resulting graph from the inversion of the arcs of 𝐷
4. While 𝑆 != 𝑖𝑠𝐸𝑚𝑝𝑡𝑦()

1. 𝑃𝑜𝑝(𝑣)
2. 𝐷𝐹𝑆(𝑣)
3. 𝑃𝑜𝑝(visited vertices)
4. 𝐷𝑒𝑙𝑒𝑡𝑒 visited vertices from 𝐷’
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• Tarjan Algorithm for Discovering Strongly Connected Components.

• Algorithm Tarjan SCC

Input: A digraph 𝐷(𝑉, 𝐸)
Output: The vertices of strongly connected components of 𝐷
1. 𝑖 ← 1.

2. Truncate the Stack

3. ∀ 𝑣 ∈ 𝑉:
𝑑𝑓𝑖(𝑣) ← 0, 𝑜𝑛𝑆𝑡𝑎𝑐𝑘 𝑣 = 𝑓𝑎𝑙𝑠𝑒

4. While 𝑑𝑓𝑖 𝑣 == 0 for an arbitrary v ∶ StrongComponent(v)

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Procedure StrongComponent(v)
1. 𝑑𝑖𝑓 𝑣 ← 𝑖, 𝐿(𝑣) ← 𝑑𝑓𝑖 𝑣 , 𝑖 ← 𝑖 + 1
2. 𝑃𝑢𝑠ℎ 𝑣 , 𝑜𝑛𝑆𝑡𝑎𝑐𝑘 𝑣 ← 𝑡𝑟𝑢𝑒
3. ∀ 𝑢 ∈ 𝑁− 𝑣

1. If (𝑑𝑓𝑖(𝑢) == 0)
𝑆𝑡𝑟𝑜𝑛𝑔𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑢), 𝐿(𝑣) ← min(𝐿(𝑣), 𝐿(𝑢))

2. Else If (𝑑𝑓𝑖(𝑢) < 𝑑𝑓𝑖(𝑣) 𝐴𝑁𝐷 𝑜𝑛𝑆𝑡𝑎𝑐𝑘(𝑣) == 𝑡𝑟𝑢𝑒
𝐿(𝑣) ← min(𝐿(𝑣), 𝑑𝑖𝑓(𝑢))

4. If (𝐿(𝑣) == 𝑑𝑓𝑖(𝑣))
𝑃𝑜𝑝(vertices “𝑤” until 𝑣), 𝑜𝑛𝑆𝑡𝑎𝑐𝑘(𝑤) ← 𝑓𝑎𝑙𝑠𝑒.
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• Let 𝐷1, 𝐷2, … 𝐷𝑘 the strongly connected components of a digraph 𝐷 .

We define Condensation of a digraph 𝐷, a digraph 𝐷∗ with vertices that

correspond to the strongly connected components of 𝐷, while a pair of

vertices of 𝐷∗ (i.e., two strongly connected components of 𝐷) are joined with

an arc 𝐷𝑖 , 𝐷𝑗 , 𝑖 ≠ 𝑗, iff a vertex in component 𝐷𝑖 is adjacent to a vertex in

component 𝐷𝑗 .

• Theorem 14:

The condensation 𝐷∗ of  any digraph 𝐷 is an acyclic graph.

o Let us assume that 𝐷∗ contains a cycle 𝐷1, 𝐷2, … 𝐷𝑚, 𝐷1 (𝑚 ≥ 2).

o Let 𝑢 ∈ 𝑉(𝐷1) and 𝑣 ∈ 𝑉(𝐷𝑚)

o Since 𝐷∗contains the path (𝐷1, 𝐷𝑚) an d the path (𝐷𝑚, 𝐷1), it is implied 

that in the directed graph it is included both path (𝑢, 𝑣) and (𝑣, 𝑢).

o Thus, vertices 𝑢 and 𝑣 belong to the same component 𝐷, 

that is a contradiction, which means that 𝐷∗ is acyclic.
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• Let 𝐷1, 𝐷2, … 𝐷𝑘 the strongly connected components of a digraph 𝐷 .

We define Condensation of a digraph 𝐷, a digraph 𝐷∗ with vertices that

correspond to the strongly connected components of 𝐷, while a pair of

vertices of 𝐷∗ (i.e., two strongly connected components of 𝐷) are joined with

an arc 𝐷𝑖 , 𝐷𝑗 , 𝑖 ≠ 𝑗, iff a vertex in component 𝐷𝑖 is adjacent to a vertex in

component 𝐷𝑗 .

• Theorem 15:

Every directed acyclic graph 𝐷 contains at least one vertex with in-degree=0 

and at least one vertex with out-degree=0

o Let  that 𝑃 = (𝑢,… , 𝑣) a path of  𝐷 of  maximum length.

o If  vertex 𝑢 is adjacent to a vertex ∈ 𝑃, then there results a cycle that 

contradicts to the main assumption

o If  vertex 𝑢 is adjacent to a vertex ∉ 𝑃, then there results a path of  greater 

length.

o Hence the vertex can not be adjacent to any other vertex  and it holds 

𝑑−(𝑣) = 0 (similarly , is proven that 𝑑+(𝑢) = 0)
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1. Can we transform a road network in a one-way street such as the traffic to

remain as simple as possible ???
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1. Can we transform a road network in a one-way street such as the traffic to

remain as simple as possible ???

• Transform the road network to a graph:

o Vertices → Crossroads

o Edges → Any pair of vertices are joined if we can move from a crossroad

to another without crossing any crossroads in the middle.
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1. Can we transform a road network in a one-way street such as the traffic to

remain as simple as possible ???

• Transform the road network to a graph:

o Vertices → Crossroads

o Edges → Any pair of vertices are joined if we can move from a crossroad

to another without crossing any crossroads in the middle.

o Is the graph “orientable” ???
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1. Can we transform a road network in a one-way street such as the traffic to
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• Transform the road network to a graph:
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o Edges → Any pair of vertices are joined if we can move from a crossroad

to another without crossing any crossroads in the middle.

o Is the graph “orientable” ???
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• Transform the road network to a graph:

o Vertices → Crossroads

o Edges → Any pair of vertices are joined if we can move from a crossroad

to another without crossing any crossroads in the middle.

o Is the graph “orientable” ??? [ if it contains cut-vertices, the answer is “NO” ]
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1. Can we transform a road network in a one-way street such as the traffic to
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2. Can we rearrange the sequence of a set of procedures in order to minimize

the time required from a system to process them ???

• The procedures are denoted by: 𝐽1, 𝐽2, … , 𝐽𝑛

• 𝑡𝑖𝑗: preparation time from require for transition from 𝐽𝑖 𝑡𝑜 𝐽𝑗
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2. Can we rearrange the sequence of a set of procedures in order to minimize

the time required from a system to process them ???

• The procedures are denoted by: 𝐽1, 𝐽2, … , 𝐽𝑛

• 𝑡𝑖𝑗: preparation time from require for transition from 𝐽𝑖 𝑡𝑜 𝐽𝑗

• Transform the sequence of procedures to a tournament graph

o Vertices → procedures

o Arcs (𝑖, 𝑗) → if 𝑡𝑖𝑗 ≤ 𝑡𝑗𝑖
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2. Can we rearrange the sequence of a set of procedures in order to minimize

the time required from a system to process them ???

• The procedures are denoted by: 𝐽1, 𝐽2, … , 𝐽𝑛

• 𝑡𝑖𝑗: preparation time from require for transition from 𝐽𝑖 𝑡𝑜 𝐽𝑗

• Transform the sequence of procedures to a tournament graph

o Vertices → procedures

o Arcs (𝑖, 𝑗) → if 𝑡𝑖𝑗 ≤ 𝑡𝑗𝑖

• Find Hamiltonian cycle with less weight (i.e., TSP)
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2. Can we rearrange the sequence of a set of procedures in order to minimize

the time required from a system to process them ???

• The procedures are denoted by: 𝐽1, 𝐽2, … , 𝐽𝑛

• 𝑡𝑖𝑗: preparation time from require for transition from 𝐽𝑖 𝑡𝑜 𝐽𝑗

• Transform the sequence of procedures to a tournament graph

o Vertices → procedures

o Arcs (𝑖, 𝑗) → if 𝑡𝑖𝑗 ≤ 𝑡𝑗𝑖

• Find Hamiltonian cycle with less weight (i.e., TSP)
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𝐽1 → 𝐽6 → 𝐽3 → 𝐽4 → 𝐽5 → 𝐽2
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3. What is the length of the circular sequence such that no subsequences of

𝑟 concecutive digits to appear more than once ???
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3. What is the length of the circular sequence such that no subsequences of

𝑟 concecutive digits to appear more than once ???

• With 𝑟 digits there can be produced 2𝑟 discrete subsequences, and hence the

circular sequence has length 𝑛 ≥ 2𝑟 .We can construct a graph with 2𝑟−1

vertices with inscriptions all the possible subsequences of length 𝑟 − 1 digits
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3. What is the length of the circular sequence such that no subsequences of

𝑟 concecutive digits to appear more than once ???

• With 𝑟 digits there can be produced 2𝑟 discrete subsequences, and hence the

circular sequence has length 𝑛 ≥ 2𝑟 .We can construct a graph with 2𝑟−1

vertices with inscriptions all the possible subsequences of length 𝑟 − 1 digits

• Let that the inscription of a vertex is 𝑎1𝑎2…a𝑟−1 ∶ 𝑎𝑖 = 0/1. Two arcs are

directed from this vertex to two vertices with inscriptions 𝑎2𝑎3…a𝑟−10 and

𝑎2𝑎3… a𝑟−11 , respectively. In these two arcs there been placed the

inscriptions 𝑎1𝑎2𝑎3…a𝑟−10 and 𝑎1𝑎2𝑎3…a𝑟−10, respectively.
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3. What is the length of the circular sequence such that no subsequences of

𝑟 concecutive digits to appear more than once ???

• With 𝑟 digits there can be produced 2𝑟 discrete subsequences, and hence the

circular sequence has length 𝑛 ≥ 2𝑟 .We can construct a graph with 2𝑟−1

vertices with inscriptions all the possible subsequences of length 𝑟 − 1 digits

• Let that the inscription of a vertex is 𝑎1𝑎2…a𝑟−1 ∶ 𝑎𝑖 = 0/1. Two arcs are

directed from this vertex to two vertices with inscriptions 𝑎2𝑎3…a𝑟−10 and

𝑎2𝑎3… a𝑟−11 , respectively. In these two arcs there been placed the

inscriptions 𝑎1𝑎2𝑎3…a𝑟−10 and 𝑎1𝑎2𝑎3…a𝑟−10, respectively.

• If 𝑎1 = 𝑎2 = 𝑎3 = ⋯ = 𝑎𝑟−1 then it is a loop.

• Every vertex has in-degree=out-degree=2, and hence the graph is balanced.

• From Theorem .8 the graph is Eulerian, and further contains path of length

𝑛 = 2𝑟 arcs.
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3. What is the length of the circular sequence such that no subsequences of

𝑟 concecutive digits to appear more than once ???

• With 𝑟 digits there can be produced 2𝑟 discrete subsequences, and hence the

circular sequence has length 𝑛 ≥ 2𝑟 .We can construct a graph with 2𝑟−1

vertices with inscriptions all the possible subsequences of length 𝑟 − 1 digits

• Let that the inscription of a vertex is 𝑎1𝑎2…a𝑟−1 ∶ 𝑎𝑖 = 0/1. Two arcs are

directed from this vertex to two vertices with inscriptions 𝑎2𝑎3…a𝑟−10 and

𝑎2𝑎3… a𝑟−11 , respectively. In these two arcs there been placed the

inscriptions 𝑎1𝑎2𝑎3…a𝑟−10 and 𝑎1𝑎2𝑎3…a𝑟−10, respectively.

• If 𝑎1 = 𝑎2 = 𝑎3 = ⋯ = 𝑎𝑟−1 then it is a loop.

• Every vertex has in-degree=out-degree=2, and hence the graph is balanced.

• The last 𝑟 − 1 digits of an arc equal the 𝑟 − 1 first digits of the next arc.
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3. What is the length of the circular sequence such that no subsequences of

𝑟 concecutive digits to appear more than once ???

• With 𝑟 digits there can be produced 2𝑟 discrete subsequences, and hence the

circular sequence has length 𝑛 ≥ 2𝑟 .We can construct a graph with 2𝑟−1

vertices with inscriptions all the possible subsequences of length 𝑟 − 1 digits

• Let that the inscription of a vertex is 𝑎1𝑎2…a𝑟−1 ∶ 𝑎𝑖 = 0/1. Two arcs are

directed from this vertex to two vertices with inscriptions 𝑎2𝑎3…a𝑟−10 and

𝑎2𝑎3… a𝑟−11 , respectively. In these two arcs there been placed the

inscriptions 𝑎1𝑎2𝑎3…a𝑟−10 and 𝑎1𝑎2𝑎3…a𝑟−10, respectively.

• If 𝑎1 = 𝑎2 = 𝑎3 = ⋯ = 𝑎𝑟−1 then it is a loop.

• Every vertex has in-degree=out-degree=2, and hence the graph is balanced.

• Obtaining the first digit of each arc of this path, the required sequence is

constructed, as there do not exist arcs with the same inscription.
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