

Graph Theory

PLANARITY

o Directed Graphs Basics

- A directed graph (or digraph) or oriented graph is called a graph D (V, A) consisting of a non-empty set of vertices V and a set A of ordered pairs of vertices called arcs.
- In an arc (*v*, *w*) the vertices *v* and *w* are called **tail** and **head**, or, **source** and **sink**, respectively.
- In-neighborhood of a vertex v is the sum of u vertices defined as: $N^{-}(v) = \{u \in V(N) | (u, v) \in A(D)\}$
- **Out-neighborhood** of a vertex v is the sum of u vertices defined as: $N^+(v) = \{u \in V(N) | (v, u) \in A(D)\}$
- In-degree of a vertex $v, d^{-}(v)$, is the number of arcs having v as head. $d^{-}(v) = |N^{-}(v)|$
- Out-degree of a peak $v, d^+(v)$, is the number of arcs having v as tail. $d^+(v) = |N^+(v)|$

o Directed Graphs Basics

- A directed graph (or digraph) or oriented graph is called a graph D (V, A) consisting of a non-empty set of vertices V and a set A of ordered pairs of vertices called arcs.
- The minimum and maximum in-degree of a graph are denoted by $d^{-}(G)$ and $d^{-}(G)$, respectively, and the minimum and maximum out-degree of a graph are denoted by $d^{+}(G)$ and $D^{+}(G)$.
- A digraph is called **balanced**, or **pseudosymmetric**, or **isograph**, if for each vertex v it holds: $d^{-}(v) = d^{+}(v)$, or equivalently, $N^{-}(v) = N^{+}(v)$.

Handshake Lemma for Directed Graphs

For each directed graph it holds the equation:

$$\sum_{i=1}^{n} d^{-}(v) = \sum_{i=1}^{n} d^{+}(v)$$

o Directed Graphs Basics

- A directed graph (or digraph) or oriented graph is called a graph D (V, A) consisting of a non-empty set of vertices V and a set A of ordered pairs of vertices called arcs.
- The minimum and maximum in-degree of a graph are denoted by $d^{-}(G)$ and $d^{-}(G)$, respectively, and the minimum and maximum out-degree of a graph are denoted by $d^{+}(G)$ and $D^{+}(G)$.
- A digraph is called **balanced**, or **pseudosymmetric**, or **isograph**, if for each vertex v it holds: $d^{-}(v) = d^{+}(v)$, or equivalently, $N^{-}(v) = N^{+}(v)$.
- A digraph is called **simple** if no loops and parallel arcs are permitted
- If in a digraph loops are allowed, but parallel/multiple arcs are not allowed then the graph is called **asymmetric** or **antisymmetric**.
- A digraph is called **symmetric** if for each arc (u, w) there exist an arc (w, u).
- A complete asymmetric graph without loops called **tournament**.

o Directed Graphs Basics

- A directed graph (or digraph) or oriented graph is called a graph D (V, A) consisting of a non-empty set of vertices V and a set A of ordered pairs of vertices called arcs.
- The minimum and maximum in-degree of a graph are denoted by $d^{-}(G)$ and $d^{-}(G)$, respectively, and the minimum and maximum out-degree of a graph are denoted by $d^{+}(G)$ and $D^{+}(G)$.
- A graph is called **underlying** if it results from a digraph by replacing its arcs with undirected edges.
- The **converse** of a digraph is obtained by inverting the direction of its arcs.
- A **complete** digraph is the graph where every pair of vertices is joined by a unique arc.

• Connectivity in Directed Graphs

- A dirgraph *D* is **weakly connected**, if the corresponding underlying graph is connected.
- A dirgraph *D* is **unilateral**, if any two vertices *v* and *w* are connected with an oriented path (*v*, *w*) OR an oriented path (*w*, *v*)
- A dirgraph *D* is **strongly connected**, if any two vertices *v* and *w* are connected with an oriented path (*v*, *w*) AND an oriented path (*w*, *v*)
- If a dirgraph D is strongly connected or unilateral, then it holds that D is also weakly connected, obviously the opposite does not hold.
- A connected (non-directed) graph *G* is called **orientable** if its edges can be oriented, so that the corresponding digraph *D* to be strongly connected.

• Theorem 1:

A connected graph is orientable *iff* each of its edges is contained in at least one cycle.

• Connectivity in Directed Graphs

- A dirgraph *D* is **weakly connected**, if the corresponding underlying graph is connected.
- A dirgraph *D* is **unilateral**, if any two vertices *v* and *w* are connected with an oriented path (*v*, *w*) OR an oriented path (*w*, *v*)
- A dirgraph *D* is **strongly connected**, if any two vertices *v* and *w* are connected with an oriented path (*v*, *w*) AND an oriented path (*w*, *v*)
- If a dirgraph D is strongly connected or unilateral, then it holds that D is also weakly connected, obviously the opposite does not hold.
- A connected (non-directed) graph *G* is called **orientable** if its edges can be oriented, so that the corresponding digraph *D* to be strongly connected.

• Theorem 1:

A connected graph is orientable *iff* each of its edges is contained in at least one cycle.

Robbins 1939: A graph is orientable *iff* it is connected and has no bridge.

• Connectivity in Directed Graphs

- A dirgraph *D* is **weakly connected**, if the corresponding underlying graph is connected.
- A dirgraph *D* is **unilateral**, if any two vertices v and w are connected with an oriented path (v, w) OR an oriented path (w, v)
- A dirgraph *D* is **strongly connected**, if any two vertices *v* and *w* are connected with an oriented path (*v*, *w*) AND an oriented path (*w*, *v*)
- If a dirgraph D is strongly connected or unilateral, then it holds that D is also weakly connected, obviously the opposite does not hold.
- A connected (non-directed) graph G is called **orientable** if its edges can be oriented, so that the corresponding digraph D to be strongly connected.

• Theorem 2 (Ryser 1957, Fulkerson 1965):

A sequence of unordered pairs of non-negative integers $S: (d_1^-, d_1^-), (d_2^-, d_2^+,), \dots, (d_n^-, d_n^+)$, where $d_1^- \ge d_2^- \ge \dots, \ge d_n^-$, is graphical and corresponds to a directed a directed graph *iff* for each integer k there holds the relations: $d_n^- \le n - 1$, $d_n^+ \le n - 1$ and $\sum_{i=1}^n d_i^- = \sum_{i=1}^n d_i^+$, while for $1 \le j \le n$ it holds:

 $\sum_{k=1}^{n} d_k^- \leq \sum_{k=1}^{j} \min(j-1, d_k^+) + \sum_{k=j+1}^{n} \min(j, d_k^+).$

o Tournament Graphs

• Complete directed graph is the graph where each pair of vertices are joined by a unique arc, where a complete asymmetric graph with no loops is a **tournament graph**. The out-degrees are also referred as **score**.

$$m = \binom{n}{2} = n(n-1)/2 = \sum_{v \in V} d^{-}(v) = \sum_{v \in V} d^{+}(v)$$

• Theorem 3:

Let v be a vertex with maximum out-degree in a tournament graph. The distance from this vertex to any other vertex is 1 or 2.

- Suppose that vertex v has a maximum out-degree $d^+(v) = k$ and suppose that it is adjacent to vertices $v_1, v_2, ..., v_k$.
- Thus, the distance of v to these vertices is $dist(v, v_i) = 1, \forall 1 \le i \le k$.
- In addition, v is adjacent to the remaining n k 1 vertices, that we denote as $u_1, u_2, \dots, u_{-}(n k 1)$.
- It must be shown that $dist(v, u_i) = 2, \forall 1 \le i \le n k 1$.

• Tournament Graphs

• Complete directed graph is the graph where each pair of vertices are joined by a unique arc, where a complete asymmetric graph with no loops is a **tournament graph**. The out-degrees are also referred as **score**.

$$m = \binom{n}{2} = n(n-1)/2 = \sum_{v \in V} d^{-}(v) = \sum_{v \in V} d^{+}(v)$$

• Theorem 3:

Let v be a vertex with maximum out-degree in a tournament graph. The distance from this vertex to any other vertex is 1 or 2.

- If every vertex u_i $(1 \le i \le n k 1)$ is adjacent $(dist (v_j, u_i) = 1)$ to some vertex v_j $(1 \le j \le k)$, then the proposition holds.
- Suppose some top u_l $(1 \le l \le n-k-1)$ is not adjacent to any vertex v_i .
- Then u is adjacent to all peaks $v_1, v_2, ..., v_k$ and is also adjacent to v.
- But then $d^+(u_l) = k + 1$ would be inappropriate because then u would have a greater degree outside of v.
- Thus, every vertex u_l is adjacent to some vertex v_i .

o Tournament Graphs

• Complete directed graph is the graph where each pair of vertices are joined by a unique arc, where a complete asymmetric graph with no loops is a **tournament graph**. The out-degrees are also referred as **score**.

$$m = \binom{n}{2} = n(n-1)/2 = \sum_{v \in V} d^{-}(v) = \sum_{v \in V} d^{+}(v)$$

• A tournament graph is called a **transitive** if it has the transitive orientation property, i.e., for each pair of arcs (a, b), (b, c) there exist an arc (a, c). [Transitive Triplets and Cyclic Triplets]

• Theorem 4:

A tournament graph is transitive *iff* it is contains no cycles.

 (\Rightarrow)

• Let *T* a tournament graph of *n* vertices.

• Let us assume that T contains cycles $C = (x_1, x_2, ..., x_r, x_1)$: $r \ge 3$.

• Tournament Graphs

• Complete directed graph is the graph where each pair of vertices are joined by a unique arc, where a complete asymmetric graph with no loops is a **tournament graph**. The out-degrees are also referred as **score**.

$$m = \binom{n}{2} = n(n-1)/2 = \sum_{v \in V} d^{-}(v) = \sum_{v \in V} d^{+}(v)$$

• A tournament graph is called a **transitive** if it has the transitive orientation property, i.e., for each pair of arcs (a, b), (b, c) there exist an arc (a, c). [Transitive Triplets and Cyclic Triplets]

• Theorem 4:

A tournament graph is transitive *iff* it is contains no cycles.

 (\Rightarrow)

• Since there exist the arcs (x_1, x_2) and (x_2, x_3) due to transitive orientation property there should also exist the arc (x_1, x_3) .

• Tournament Graphs

• Complete directed graph is the graph where each pair of vertices are joined by a unique arc, where a complete asymmetric graph with no loops is a **tournament graph**. The out-degrees are also referred as **score**.

$$m = \binom{n}{2} = n(n-1)/2 = \sum_{v \in V} d^{-}(v) = \sum_{v \in V} d^{+}(v)$$

• A tournament graph is called a **transitive** if it has the transitive orientation property, i.e., for each pair of arcs (a, b), (b, c) there exist an arc (a, c). [Transitive Triplets and Cyclic Triplets]

• Theorem 4:

A tournament graph is transitive *iff* it is contains no cycles.

 (\Rightarrow)

• Similarly, it is implied that there should also exist the arcs $(x_1, x_4), \dots, (x_1, x_r)$.

• Tournament Graphs

• Complete directed graph is the graph where each pair of vertices are joined by a unique arc, where a complete asymmetric graph with no loops is a **tournament graph**. The out-degrees are also referred as **score**.

$$m = \binom{n}{2} = n(n-1)/2 = \sum_{v \in V} d^{-}(v) = \sum_{v \in V} d^{+}(v)$$

• A tournament graph is called a **transitive** if it has the transitive orientation property, i.e., for each pair of arcs (a, b), (b, c) there exist an arc (a, c). [Transitive Triplets and Cyclic Triplets]

• Theorem 4:

A tournament graph is transitive *iff* it is contains no cycles.

 (\Rightarrow)

- However, it is a contradiction since there also exist the arc (x_r, x_1) .
- Thus, *T* should contain no cycle.

• Tournament Graphs

• Complete directed graph is the graph where each pair of vertices are joined by a unique arc, where a complete asymmetric graph with no loops is a **tournament graph**. The out-degrees are also referred as **score**.

$$m = \binom{n}{2} = n(n-1)/2 = \sum_{v \in V} d^{-}(v) = \sum_{v \in V} d^{+}(v)$$

• A tournament graph is called a **transitive** if it has the transitive orientation property, i.e., for each pair of arcs (a, b), (b, c) there exist an arc (a, c). [Transitive Triplets and Cyclic Triplets]

• Theorem 4:

A tournament graph is transitive *iff* it is contains no cycles.

 (\Leftarrow)

- Let us assume that T is an acyclic tournament graph and that there exist the arcs (x_1, x_2) and (x_2, x_3) .
- Since T contains no cycle it is implied that there does not exist arc (x_3, x_1)
- Thus, there exist arc (x_1, x_3) and the graph is transitive.

• Tournament Graphs

• Complete directed graph is the graph where each pair of vertices are joined by a unique arc, where a complete asymmetric graph with no loops is a **tournament graph**. The out-degrees are also referred as **score**.

$$m = \binom{n}{2} = n(n-1)/2 = \sum_{v \in V} d^{-}(v) = \sum_{v \in V} d^{+}(v)$$

A tournament graph is called a transitive if it has the transitive orientation property, i.e., for each pair of arcs (a, b), (b, c) there exist an arc (a, c). [Transitive Triplets and Cyclic Triplets]

• Theorem 5:

A non-decreasing sequence S of n non negative integers is graphical score sequence of a transitive tournament graph iff S is : 0,1,2, ..., n - 1 (\Rightarrow)

• Let a tournament graph T(V, A), $V = \{x_1, x_2, \dots, x_n\}$ and $A = \{(x_i, x_j): 1 \le j < i \le n\}.$

• Then, for each vertex it holds that $d^+(x_i) = i - 1$ ($1 \le i \le n$), and hence T is transitive and has S as score sequence.

• Tournament Graphs

• Complete directed graph is the graph where each pair of vertices are joined by a unique arc, where a complete asymmetric graph with no loops is a **tournament graph**. The out-degrees are also referred as **score**.

$$m = \binom{n}{2} = n(n-1)/2 = \sum_{v \in V} d^{-}(v) = \sum_{v \in V} d^{+}(v)$$

A tournament graph is called a transitive if it has the transitive orientation property, i.e., for each pair of arcs (a, b), (b, c) there exist an arc (a, c). [Transitive Triplets and Cyclic Triplets]

• Theorem 5:

A non-decreasing sequence S of n non negative integers is graphical score sequence of a transitive tournament graph iff S is : 0,1,2, ..., n - 1 (\Leftarrow)

• Let us assume that tournament graph T of n vertices is transitive

• It is sufficient to prove that there do not exist two vertices with the same score.

• Tournament Graphs

• Complete directed graph is the graph where each pair of vertices are joined by a unique arc, where a complete asymmetric graph with no loops is a **tournament graph**. The out-degrees are also referred as **score**.

$$m = \binom{n}{2} = n(n-1)/2 = \sum_{v \in V} d^{-}(v) = \sum_{v \in V} d^{+}(v)$$

A tournament graph is called a transitive if it has the transitive orientation property, i.e., for each pair of arcs (a, b), (b, c) there exist an arc (a, c). [Transitive Triplets and Cyclic Triplets]

• Theorem 5:

A non-decreasing sequence S of n non negative integers is graphical score sequence of a transitive tournament graph iff S is : 0,1,2, ..., n - 1 (\Leftarrow)

- Let us assume that there exist the arc (x_i, x_j) and let the set $N^+(x_j)$.
- Since there exist the arc (x_i, x_j) and the exist arc (x_j, x_k) for each vertex $x_k \in N^+(x_j)$, it is implied that there exist arc (x_i, x_k) .

• Tournament Graphs

• Complete directed graph is the graph where each pair of vertices are joined by a unique arc, where a complete asymmetric graph with no loops is a **tournament graph**. The out-degrees are also referred as **score**.

$$m = \binom{n}{2} = n(n-1)/2 = \sum_{v \in V} d^{-}(v) = \sum_{v \in V} d^{+}(v)$$

A tournament graph is called a transitive if it has the transitive orientation property, i.e., for each pair of arcs (a, b), (b, c) there exist an arc (a, c). [Transitive Triplets and Cyclic Triplets]

• Theorem 6:

A non-decreasing sequence of n non negative integers $S: d_1, d_2, \dots, d_{d_n}, d_{d_{n+1}} - 1, \dots, d_{n-1} - 1$ is a graphical sequence of scores.

• Theorem 7 (H.G. Landau 1953):

A non-decreasing sequence of *n* non negative integers $S: d_1, d_2, ..., d_n$ is a graphical sequence of scores *iff* for each integer j $(1 \le j \le n)$ it holds: $\sum_{i=1}^{j} d_i \ge {j \choose 2}$, where the equality holds for j = n.

o Directed Paths and Cycles

- A path in a digraph between two vertices s and t is a sequence of vertices such that for any consecutive pair of vertices u and v to exist the arc (u, v) (forward-arc) or the arc (v, u) (backward arc).
- A directed path is consisted only by forward arc
- A connected digraph D is Eulerian if there exist a directed circuit containing each arc of D.
- In order for a digraph *D* to be Eulerian it must:
 - be strongly connected
 - not contain sources and sinks, i.e., to not contain vertices with in-(resp. out-) degree equal to 0.
- If the graph is unilateral and does not contain sources or sinks, then it contains an open Eulerian trace.

o Directed Paths and Cycles

• Theorem 8 (Ghouila-Houri, 1960):

A strongly connected digraph is Eulerian *iff* it is balanced.

• Corollary:

A strongly connected digraph has an Eulerian trace if there exist two vertices v and u such that $d^{-}(v) = d^{+}(v) + 1$ and $d^{-}(u) = d^{+}(u) + 1$, while for any other vertex w it holds $d^{-}(w) = d^{+}(w)$.

• A connected digraph *D* is Hamiltonian (resp. semi-Hamiltonian), if there exist a directed cycle (resp. path) containing every vertex of *D*.

• Theorem 9:

A strongly connected digraph *D* of *n* vertices is Hamiltonian if $d^-(v) \ge \frac{n}{2}$ and $d^+(v) \ge \frac{n}{2}$ for each vertex $v \in V(D)$

o Directed Paths and Cycles

• Theorem 10 (Redei, 1934):

Every tournament graph has a Hamiltonian path, i.e., it is semi-Hamiltonian

- Theorem 11 (Harray and Moser, 1966): Every strongly connected tournament graph of n ≥ 3 vertices has cycles of length l = 3,4, ..., n (i.e., it is Hamiltonian)
- Theorem 12 (Roy, 1967 and Gallai, 1968): A digraph *D* contains directed path of length x - 1.
- Corrolary:

Every tournament graph has a Hamiltonian path.

o DFS on Directed Graphs

- The DFS algorithm is similar to directed graphs except that produced edges are classified into 4 sets:
 - The set T of the edges contained in the trees of the forest and are called **tree-edges**.
 - The set B of the edges called **back-edges** and join descendant vertices to their ancestors.
 - The set F of the edges called **forward-edges** and join ancestral vertices to their descendant .
 - The C set of edges called **cross-edges** and have no ancestor-descendant relationship

o DFS on Directed Graphs

• Theorem 13:

If during the depth first search of a directed graph a cross-edge (u, v) is produced, then it holds: dfi(u) > dif(v)

- Suppose dfi(u) < dfi(v), visiting vertex u before vertex v.
- If we assign value in dfi(v) when following the edge (u, v), then the edge (u, v) is a tree-edge.
- Otherwise we visit vertex v as the descendant of vertex u, but not as her son.
- Thus, the edge (u, v) can not be a cross-edge and therefore we coclude to the contradiction.

o DFS on Directed Graphs

- Measuring Strong Connectivity deploying DFS: In order to measure the strong connectivity of a digraph we should deploy two times the DFS algorithm starting from an arbitrary vertex..
 - The first time for each vertex v check the unmarked neighboring vertices where v is joined only through outgoing arcs.
 - The second time, for each vertex v we check the unmarked neighboring vertices where v is joined only through incoming arcs.
 - In order for the graph to be strongly connected, all the vertices there should be visited in both applications (first and second time) of the algorithm.

• Topological Sorting

- A digraph is acyclic if it does not contain directed circles.
- If during the construction of the DFS tree back-edges are resulting, then we conclude that the graph has a cycle. Conversely, if there is no back-edge the graph is acyclic.

• Theorem 13:

If the edge (u, v) is a back-edge, then it easily results that the graph has a cycle regarding the path from vertex v to vertex u.

- Let that there exist the cycle $(v_1 \rightarrow v_2 \rightarrow \cdots \nu_k \rightarrow v_1)$.
- Let us assume that we first meet the vertex v_i , with the min dfi value.
- Next, we visit the vertices that have greater *dfi* values.
- This way, we will meet the vertex v_{i-1} that leads to vertex v_i , i.e., to a predecessor of v_i , that means that it is a back-edge.

• Topological Sorting

- A digraph is acyclic if it does not contain directed circles.
- If during the construction of the DFS tree back-edges are resulting, then we conclude that the graph has a cycle. Conversely, if there is no back-edge the graph is acyclic.
- Topological sorting (or, topological order) of Directed Acyclic Graph is an arrangement the vertices of the grpah such that if the graph G contains the arc (v, w), then vertex v appears before vertex w in the topological order.
- A topological order of G is an arrangement of its vertices $(v_1, v_2, ..., v_n)$:

 $\forall \ (v_i, v_j) \in G \rightarrow i \ < j \ .$

• Topological Sorting

- A digraph is acyclic if it does not contain directed circles.
- If during the construction of the DFS tree back-edges are resulting, then we conclude that the graph has a cycle. Conversely, if there is no back-edge the graph is acyclic.
- Topological sorting (or, topological order) of Directed Acyclic Graph is an arrangement the vertices of the grpah such that if the graph G contains the arc (v, w), then vertex v appears before vertex w in the topological order.
- Algorithm Topological Order with DFS Input: A DAG D(V, E)
 Output: Linearization of the vertices of D
 - 1. Apply DFS on DAG *D*
 - 2. Set to each vertex the value *post* during their extraction from the stack
 - 3. Sort in descending order the *post* values.

o Discovering Strongly Connected Components

Kosaraju Algorithm for Discovering Strongly Connected Components.

Given a directed graph D

- 1. Apply DFS enumerating the vertices one-by-one with post values.
- 2. Construct the directed graph D' inverting the directions of the arcs of D
- 3. Apply DFS on D' starting from the vertex with the max *post* value. [if the graph has n vertices then start from the vertex with *post* value =n]
- 4. Perform a second DFS pass exhausting the graph
- 5. Every tree in the resulting DFS forest is a Strongly Connected Component

o Discovering Strongly Connected Components

- Kosaraju Algorithm for Discovering Strongly Connected Components.
- Algorithm Kosaraju
 Input: A digraph *D*(*V*, *E*)
 Output: The strongly connected components of *D*
 - 1. Let *S* an empty stack.
 - 2. While S does not contain all the vertices
 - 1. Perform *DFS* starting from an arbitrary vertex $v \notin S$
 - 2. *Push* (the final vertex *u* (alongside with all the previous vertices by visit-order)).
 - 3. $D' \leftarrow$ the resulting graph from the inversion of the arcs of D
 - 4. While S := isEmpty()
 - 1. Pop(v)
 - 2. DFS(v)
 - 3. *Pop*(visited vertices)
 - 4. *Delete* visited vertices from *D*'

o Discovering Strongly Connected Components

- Tarjan Algorithm for Discovering Strongly Connected Components.
- Algorithm Tarjan SCC
 Input: A digraph D(V, E)
 Output: The vertices of strongly connected components of D
 1. *i* ← 1.
 - 2. Truncate the Stack
 - 3. $\forall v \in V$: $dfi(v) \leftarrow 0$, onStack(v) = false
 - 4. While dfi(v) == 0 for an arbitrary v : StrongComponent(v)

Procedure StrongComponent(v)

- 1. $dif(v) \leftarrow i, \ L(v) \leftarrow dfi(v), \ i \leftarrow i+1$
- 2. $Push(v), onStack(v) \leftarrow true$
- 3. $\forall u \in N^-(v)$
 - 1. If (dfi(u) == 0)
 - $StrongComponent(u), L(v) \leftarrow \min(L(v), L(u))$
 - 2. Else If (dfi(u) < dfi(v) AND onStack(v) == true $L(v) \leftarrow \min(L(v), dif(u))$

4. If (L(v) == dfi(v)) $Pop(vertices "w" until v), onStack(w) \leftarrow false.$

o Discovering Strongly Connected Components

• Let $D_1, D_2, ..., D_k$ the strongly connected components of a digraph D. We define **Condensation** of a digraph D, a digraph D^* with vertices that correspond to the strongly connected components of D, while a pair of vertices of D^* (i.e., two strongly connected components of D) are joined with an arc (D_i, D_j) , $i \neq j$, *iff* a vertex in component D_i is adjacent to a vertex in component D_j .

• Theorem 14:

The condensation D^* of any digraph D is an acyclic graph.

- Let us assume that D^* contains a cycle $D_1, D_2, \dots, D_m, D_1$ $(m \ge 2)$.
- Let $u \in V(D_1)$ and $v \in V(D_m)$
- Since D^* contains the path (D_1, D_m) and the path (D_m, D_1) , it is implied that in the directed graph it is included both path (u, v) and (v, u).
- Thus, vertices u and v belong to the same component D, that is a contradiction, which means that D^* is acyclic.

o Discovering Strongly Connected Components

• Let $D_1, D_2, ..., D_k$ the strongly connected components of a digraph D. We define **Condensation** of a digraph D, a digraph D^* with vertices that correspond to the strongly connected components of D, while a pair of vertices of D^* (i.e., two strongly connected components of D) are joined with an arc (D_i, D_j) , $i \neq j$, *iff* a vertex in component D_i is adjacent to a vertex in component D_j .

• Theorem 15:

Every directed acyclic graph D contains at least one vertex with in-degree=0 and at least one vertex with out-degree=0

- Let that P = (u, ..., v) a path of D of maximum length.
- If vertex *u* is adjacent to a vertex ∈ *P*, then there results a cycle that contradicts to the main assumption
- If vertex u is adjacent to a vertex $\notin P$, then there results a path of greater length.
- Hence the vertex can not be adjacent to any other vertex and it holds $d^{-}(v) = 0$ (similarly, is proven that $d^{+}(u) = 0$)

• Problems and Applications

1. Can we transform a road network in a one-way street such as the traffic to remain as simple as possible ???

- 1. Can we transform a road network in a one-way street such as the traffic to remain as simple as possible ???
- Transform the road network to a graph:
 - Vertices \rightarrow Crossroads
 - Edges → Any pair of vertices are joined if we can move from a crossroad to another without crossing any crossroads in the middle.

- 1. Can we transform a road network in a one-way street such as the traffic to remain as simple as possible ???
- Transform the road network to a graph:
 - Vertices \rightarrow Crossroads
 - Edges \rightarrow Any pair of vertices are joined if we can move from a crossroad to another without crossing any crossroads in the middle.

- 1. Can we transform a road network in a one-way street such as the traffic to remain as simple as possible ???
- Transform the road network to a graph:
 - Vertices \rightarrow Crossroads
 - Edges \rightarrow Any pair of vertices are joined if we can move from a crossroad to another without crossing any crossroads in the middle.
- Is the graph "orientable" ???

• Problems and Applications

- 1. Can we transform a road network in a one-way street such as the traffic to remain as simple as possible ???
- Transform the road network to a graph:
 - Vertices \rightarrow Crossroads
 - Edges → Any pair of vertices are joined if we can move from a crossroad to another without crossing any crossroads in the middle.
- Is the graph "orientable" ???

Robbins,

• Problems and Applications

- 1. Can we transform a road network in a one-way street such as the traffic to remain as simple as possible ???
- Transform the road network to a graph:
 - Vertices \rightarrow Crossroads
 - Edges → Any pair of vertices are joined if we can move from a crossroad to another without crossing any crossroads in the middle.
- Is the graph "orientable" ??? [if it contains cut-vertices, the answer is "NO"]

Robbins,

• Problems and Applications

- 1. Can we transform a road network in a one-way street such as the traffic to remain as simple as possible ???
- Transform the road network to a graph:
 - Vertices \rightarrow Crossroads
 - Edges → Any pair of vertices are joined if we can move from a crossroad to another without crossing any crossroads in the middle.
- Is the graph "orientable" ??? [if it contains cut-vertices, the answer is "NO"]

Robbins,

- 2. Can we rearrange the sequence of a set of procedures in order to minimize the time required from a system to process them ???
- The procedures are denoted by: $J_1, J_2, ..., J_n$
- t_{ij} : preparation time from require for transition from J_i to J_j

	J_1	J_2	J_3	J_4	J_5	J_6
J_1	0	5	3	4	2	1
J_2	1	0	1	2	3	2
J_3	2	5	0	1	2	3
J_4	1	4	4	0	1	2
J_5	1	3	4	5	0	5
J_6	4	4	2	3	1	0

• Problems and Applications

- 2. Can we rearrange the sequence of a set of procedures in order to minimize the time required from a system to process them ???
- The procedures are denoted by: $J_1, J_2, ..., J_n$
- t_{ij} : preparation time from require for transition from J_i to J_j
- Transform the sequence of procedures to a tournament graph
 - Vertices \rightarrow procedures
 - Arcs $(i,j) \rightarrow \text{if } t_{ij} \leq t_{ji}$

• Problems and Applications

- 2. Can we rearrange the sequence of a set of procedures in order to minimize the time required from a system to process them ???
- The procedures are denoted by: $J_1, J_2, ..., J_n$
- t_{ij} : preparation time from require for transition from J_i to J_j
- Transform the sequence of procedures to a tournament graph
 - Vertices \rightarrow procedures
 - Arcs $(i,j) \rightarrow \text{if } t_{ij} \leq t_{ji}$
- Find Hamiltonian cycle with less weight (i.e., TSP)

- 2. Can we rearrange the sequence of a set of procedures in order to minimize the time required from a system to process them ???
- The procedures are denoted by: $J_1, J_2, ..., J_n$
- t_{ij} : preparation time from require for transition from J_i to J_j
- Transform the sequence of procedures to a tournament graph
- Vertices \rightarrow procedures • Arcs $(i, j) \rightarrow$ if $t_{ij} \leq t_{ji}$ Find Hamiltonian cycle with less weight (i.e., TSP) $\frac{J_1 \quad J_2 \quad J_3 \quad J_4 \quad J_5 \quad J_6}{J_1 \quad 0 \quad 5 \quad 3 \quad 4 \quad 2 \quad 1}$ $J_2 \quad 1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 2$ $J_3 \quad 2 \quad 5 \quad 0 \quad 1 \quad 2 \quad 3$ $J_4 \quad 1 \quad 4 \quad 4 \quad 0 \quad 1 \quad 2'$ $J_5 \quad 1 \quad 3 \quad 4 \quad 5 \quad 0 \quad 5$ $J_6 \quad 4 \quad 4 \quad 2 \quad 3 \quad 1 \quad 0$ 45

• Problems and Applications

3. What is the length of the circular sequence such that no subsequences of *r* concecutive digits to appear more than once ???

- 3. What is the length of the circular sequence such that no subsequences of *r* concecutive digits to appear more than once ???
- With r digits there can be produced 2^r discrete subsequences, and hence the circular sequence has length $n \ge 2^r$. We can construct a graph with 2^{r-1} vertices with inscriptions all the possible subsequences of length r-1 digits

- 3. What is the length of the circular sequence such that no subsequences of *r* concecutive digits to appear more than once ???
- With r digits there can be produced 2^r discrete subsequences, and hence the circular sequence has length $n \ge 2^r$. We can construct a graph with 2^{r-1} vertices with inscriptions all the possible subsequences of length r-1 digits
- Let that the inscription of a vertex is $a_1a_2 \dots a_{r-1}$: $a_i = 0/1$. Two arcs are directed from this vertex to two vertices with inscriptions $a_2a_3 \dots a_{r-1}0$ and $a_2a_3 \dots a_{r-1}1$, respectively. In these two arcs there been placed the inscriptions $a_1a_2a_3 \dots a_{r-1}0$ and $a_1a_2a_3 \dots a_{r-1}0$, respectively.

$e_1 \\ 0000$	$e_2 \\ 0001$	e_3 0011	$e_4 \\ 0111$	e_5 1111	e_{6} 1110	e_7 1100	e_8 1001
e_9 0010	e_{10} 0101	$e_{11} \\ 1011$	$e_{12} \\ 0110$	$e_{13} \\ 1101$	$e_{14} \\ 1010$	$e_{15} \\ 0100$	e_{16} 1000

- 3. What is the length of the circular sequence such that no subsequences of *r* concecutive digits to appear more than once ???
- With r digits there can be produced 2^r discrete subsequences, and hence the circular sequence has length $n \ge 2^r$. We can construct a graph with 2^{r-1} vertices with inscriptions all the possible subsequences of length r-1 digits
- Let that the inscription of a vertex is $a_1a_2 \dots a_{r-1}$: $a_i = 0/1$. Two arcs are directed from this vertex to two vertices with inscriptions $a_2a_3 \dots a_{r-1}0$ and $a_2a_3 \dots a_{r-1}1$, respectively. In these two arcs there been placed the inscriptions $a_1a_2a_3 \dots a_{r-1}0$ and $a_1a_2a_3 \dots a_{r-1}0$, respectively.
- If $a_1 = a_2 = a_3 = \dots = a_{r-1}$ then it is a loop.
- Every vertex has in-degree=out-degree=2, and hence the graph is balanced.
- From Theorem .8 the graph is Eulerian, and further contains path of length $n = 2^r$ arcs.

- 3. What is the length of the circular sequence such that no subsequences of *r* concecutive digits to appear more than once ???
- With r digits there can be produced 2^r discrete subsequences, and hence the circular sequence has length $n \ge 2^r$. We can construct a graph with 2^{r-1} vertices with inscriptions all the possible subsequences of length r-1 digits
- Let that the inscription of a vertex is $a_1a_2 \dots a_{r-1}$: $a_i = 0/1$. Two arcs are directed from this vertex to two vertices with inscriptions $a_2a_3 \dots a_{r-1}0$ and $a_2a_3 \dots a_{r-1}1$, respectively. In these two arcs there been placed the inscriptions $a_1a_2a_3 \dots a_{r-1}0$ and $a_1a_2a_3 \dots a_{r-1}0$, respectively.
- If $a_1 = a_2 = a_3 = \dots = a_{r-1}$ then it is a loop.
- Every vertex has in-degree=out-degree=2, and hence the graph is balanced.
- The last r 1 digits of an arc equal the r 1 first digits of the next arc.

- 3. What is the length of the circular sequence such that no subsequences of *r* concecutive digits to appear more than once ???
- With r digits there can be produced 2^r discrete subsequences, and hence the circular sequence has length $n \ge 2^r$. We can construct a graph with 2^{r-1} vertices with inscriptions all the possible subsequences of length r-1 digits
- Let that the inscription of a vertex is $a_1a_2 \dots a_{r-1}$: $a_i = 0/1$. Two arcs are directed from this vertex to two vertices with inscriptions $a_2a_3 \dots a_{r-1}0$ and $a_2a_3 \dots a_{r-1}1$, respectively. In these two arcs there been placed the inscriptions $a_1a_2a_3 \dots a_{r-1}0$ and $a_1a_2a_3 \dots a_{r-1}0$, respectively.
- If $a_1 = a_2 = a_3 = \dots = a_{r-1}$ then it is a loop.
- Every vertex has in-degree=out-degree=2, and hence the graph is balanced.
- Obtaining the first digit of each arc of this path, the required sequence is constructed, as there do not exist arcs with the same inscription.