ph Theory

Directed Graphs




PLANARITY




DIRECTED (GRAPHS

O Directed Graphs Basics

A directed graph (or digraph) or oriented graph is called a graph. |
D (V, A) consisting of a non-empty set of vertices V and a set A of ordered
pairs of vertices called arcs.

® In an arc (v,w) the vertices v and w are called tail and head, or,
source and sink, respectively.

* In-neighborhood of a vertex v is the sum of u vertices defined as:

N~(v) = {u e VIN)|(u,v) € A(D)}

* Out-neighborhood of a vertex v is the sum of u vertices defined as:

N*() = {u e VIN)|(v,w) € A(D)}

* In-degree of a vertex v,d” (V) , is the number of arcs having v as head.

d~(v) = [N~ ()]

* Out-degree of a peak v,d™ (v), is the number of arcs having v as tail.
d*() = IN*(v)] O
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O Directed Graphs Basics

* A directed graph (or digraph) or oriented graph is called a graph. |
D (V, A) consisting of a non-empty set of vertices V and a set A of ordered
pairs of vertices called arcs.

®* The minimum and maximum in-degree of a graph are denoted by
d~(G) and d™( @), respectively, and the minimum and maximum out-degree

of a graph are denoted by d*(G) and D*(G).

* A digraph is called balanced, or pseudosymmetric, or isograph, if for
each vertex v it holds: d~(v) = d*(v), or equivalently , N~ (v) = N*(v).

Handshake Lemma for Directed Graphs

For each directed graph it holds the equation:
n

i d~(v) = z d*(v)
i=1

=1
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O Directed Graphs Basics

A directed graph (or digraph) or oriented graph is called a graph. |
D (V, A) consisting of a non-empty set of vertices V and a set A of ordered
pairs of vertices called arcs.

®* The minimum and maximum in-degree of a graph are denoted by
d~(G) and d™( @), respectively, and the minimum and maximum out-degree

of a graph are denoted by d*(G) and D*(G).

* A digraph is called balanced, or pseudosymmetric, or isograph, if for
each vertex v it holds: d~(v) = d*(v), or equivalently , N~ (v) = N*(v).

* A digraph is called simple if no loops and parallel arcs are permitted

* If in a digraph loops are allowed, but parallel/multiple arcs are not allowed
then the graph is called asymmetric or antisymmetric.

* A digraph is called symmetric if for each arc (U, w) there exist an arc (W, u).

* A complete asymmetric graph without loops called tournament. °
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O Directed Graphs Basics

A directed graph (or digraph) or oriented graph is called a graph. |
D (V, A) consisting of a non-empty set of vertices V and a set A of ordered
pairs of vertices called arcs.

®* The minimum and maximum in-degree of a graph are denoted by
d~(G) and d™( @), respectively, and the minimum and maximum out-degree

of a graph are denoted by d*(G) and D*(G).

* A graph 1s called underlying if it results from a digraph by replacing its arcs
with undirected edges.

* The converse of a dioraph is obtained by inverting the direction of its arcs.
grap y g

* A complete digraph is the graph where every pair of vertices is joined by a
unique arc.
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o0 Connectivity in Directed Graphs

A dirgraph D is weakly connected, if the corresponding underlying graph is
connected.

A dirgraph D is unilateral, if any two vertices ¥ and W are connected with
an oriented path (v, w) OR an oriented path (W, V)

A dirgraph D is strongly connected, if any two vertices ¥ and W are
connected with an oriented path (v, w) AND an oriented path (W, V)

If a dirgraph D is strongly connected or unilateral, then it holds that D is also
weakly connected, obviously the opposite does not hold.

A connected (non-directed) graph G is called orientable if its edges can be
oriented, so that the corresponding digraph D to be strongly connected.

Theorem 1:
A connected graph is orientable 7/ each of its edges is contained in
at least one cycle.
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o0 Connectivity in Directed Graphs

A dirgraph D is weakly connected, if the corresponding underlying graph is

connected.

A dirgraph D is unilateral, if any two vertices ¥ and W are connected with
an oriented path (v, w) OR an oriented path (W, V)

A dirgraph D is strongly connected, if any two vertices ¥ and W are
connected with an oriented path (v, w) AND an oriented path (W, V)

If a dirgraph D is strongly connected or unilateral, then it holds that D is also
weakly connected, obviously the opposite does not hold.

A connected (non-directed) graph G is called orientable if its edges can be
oriented, so that the corresponding digraph D to be strongly connected.

Theorem 1:
A connected graph is orientable 7/ each of its edges is contained in
at least one cycle.

Robbins 1939: A graph 1s orientable /ffit is connected and has no bridge.
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o0 Connectivity in Directed Graphs

A dirgraph D is weakly connected, if the corresponding underlying graph is

connected.

A dirgraph D is unilateral, if any two vertices ¥ and W are connected with
an oriented path (v, w) OR an oriented path (W, V)

A dirgraph D is strongly connected, if any two vertices ¥ and W are
connected with an oriented path (v, w) AND an oriented path (W, V)

If a dirgraph D is strongly connected or unilateral, then it holds that D is also
weakly connected, obviously the opposite does not hold.

A connected (non-directed) graph G is called orientable if its edges can be
oriented, so that the corresponding digraph D to be strongly connected.

Theorem 2 (Ryser 1957, Fulkerson 1965):

A sequence of unordered pairs of non-negative  integers
S:(dy,dy), (d3,d3)), ..., (dy,dy), where df =d5 = -+,>dy, is graphical and
corresponds to a directed a directed graph 7ff for each integer k there holds
the relations: d; <n—1, df <n—-1land Y-, d;j =Y, d,

while for 1 < j < n it holds:

Sr_ydi < Yhoymin( — 1,dy) + Xi- 4, min(, d).
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O Tournament Graphs

* Complete directed graph is the graph where each pair of vertices are joined by
a unique arc, where a complete asymmetric graph with no loops 1s a
tournament graph. The out-degrees are also referred as score.

m= () =n(n—1)/2= Tpey d" () = Tyey d* ()

* Theorem 3:
Let v be a vertex with maximum out-degree in a tournament graph.
The distance from this vertex to any other vertex is 1 or 2.

o Suppose that vertex v has a maximum out-degree d*(v) = k and suppose
that it is adjacent to vertices Vq, Uy, ..., Ug.

o 'Thus, the distance of v to these vertices is dist(v,v;) = 1,V1 <i < k.

o In addition, v is adjacent to the remaining n - k - 1 vertices, that we
denote as Uq, Uy, ..., u_(n — k —1).

o It must be shown that dist (v,u;) =2,V1<i<n-k-1. °
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O Tournament Graphs

* Complete directed graph is the graph where each pair of vertices are joined by
a unique arc, where a complete asymmetric graph with no loops 1s a
tournament graph. The out-degrees are also referred as score.

m= () =n(n—1)/2= Tpey d" () = Tyey d* ()

* Theorem 3:
Let v be a vertex with maximum out-degree in a tournament graph.
The distance from this vertex to any other vertex is 1 or 2.

o If every vertex u; (1 < i <n- k- 1)is adjacent (dist (vj,u;) = 1) to
some vertex V; (1 < j < k), then the proposition holds.

o Suppose some top U; (1 < I < n-k-1) is not adjacent to any vertex v;.

o Then u is adjacent to all peaks v, V5, ..., Vg and is also adjacent to v.

o But then d*(u;) = k + 1 would be inappropriate because then u would
have a greater degree outside of V.

o Thus, every vertex u; 1s adjacent to some vertex v;.
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O Tournament Graphs

* Complete directed graph is the graph where each pair of vertices are joined by
a unique arc, where a complete asymmetric graph with no loops 1s a
tournament graph. The out-degrees are also referred as score.

m= () =n(n—1)/2= Tpey d" () = Tyey d* ()

® A tournament graph is called a transitive if it has the transitive orientation
property, i.e., for each pair of arcs (a,b), (b,c) there exist an arc (a,c).
[Transitive Triplets and Cyclic Triplets]

* Theorem 4:
A tournament graph is transitive 7ff it is contains no cycles.
(=)
o Let T a tournament graph of n vertices.
o Let us assume that T contains cycles C = (X1, X3, ..., X, X1): 7 = 3.
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O Tournament Graphs

* Complete directed graph is the graph where each pair of vertices are joined by
a unique arc, where a complete asymmetric graph with no loops 1s a
tournament graph. The out-degrees are also referred as score.

m= () =n(n—1)/2= Tpey d" () = Tyey d* ()

® A tournament graph is called a transitive if it has the transitive orientation
property, i.e., for each pair of arcs (a,b), (b,c) there exist an arc (a,c).
[Transitive Triplets and Cyclic Triplets]

* Theorem 4:

A tournament graph is transitive 7ff it is contains no cycles.

=)

o Since there exist the arcs (X1, X5) and (X5, X3) due to transitive orientation

property there should also exist the arc (x4, X3).
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O Tournament Graphs

* Complete directed graph is the graph where each pair of vertices are joined by
a unique arc, where a complete asymmetric graph with no loops 1s a
tournament graph. The out-degrees are also referred as score.

m= () =n(n—1)/2= Tpey d" () = Tyey d* ()

® A tournament graph is called a transitive if it has the transitive orientation
property, i.e., for each pair of arcs (a,b), (b,c) there exist an arc (a,c).
[Transitive Triplets and Cyclic Triplets]

* Theorem 4:

A tournament graph is transitive 7ff it is contains no cycles.

=)

o Similarly, it is implied that there should also exist the arcs

(X1, %4), o (X1, X7).
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O Tournament Graphs

* Complete directed graph is the graph where each pair of vertices are joined by
a unique arc, where a complete asymmetric graph with no loops 1s a
tournament graph. The out-degrees are also referred as score.

m= () =n(n—1)/2= Tpey d" () = Tyey d* ()

® A tournament graph is called a transitive if it has the transitive orientation
property, i.e., for each pair of arcs (a,b), (b,c) there exist an arc (a,c).
[Transitive Triplets and Cyclic Triplets]

* Theorem 4:
A tournament graph is transitive 7ff it is contains no cycles.
(=)
o However, it is a contradiction since there also exist the arc (x;-, X1).
o Thus, T should contain no cycle.
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O Tournament Graphs

* Complete directed graph is the graph where each pair of vertices are joined by
a unique arc, where a complete asymmetric graph with no loops 1s a
tournament graph. The out-degrees are also referred as score.

m= () =n(n—1)/2= Tpey d" () = Tyey d* ()

® A tournament graph is called a transitive if it has the transitive orientation
property, i.e., for each pair of arcs (a,b), (b,c) there exist an arc (a,c).
[Transitive Triplets and Cyclic Triplets]

* Theorem 4:
A tournament graph is transitive 7ff it is contains no cycles.
(<)
o Let us assume that T is an acyclic tournament graph and that there exist the
arcs (X1, Xp) and (x5, X3).
o Since T contains no cycle it is implied that there does not exist arc (X3, Xq) e
o Thus, there exist arc (X1, x3) and the graph is transitive.
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O Tournament Graphs

* Complete directed graph is the graph where each pair of vertices are joined by
a unique arc, where a complete asymmetric graph with no loops 1s a
tournament graph. The out-degrees are also referred as score.

m= () =n(n—1)/2= Tpey d" () = Tyey d* ()

® A tournament graph is called a transitive if it has the transitive orientation
property, i.e., for each pair of arcs (a,b), (b,c) there exist an arc (a,c).
[Transitive Triplets and Cyclic Triplets]

°* Theorem 5:
A non-decreasing sequence S of n non negative integers is graphical score
sequence of a transitive tournament graph iff Sis:0,1,2,...,n — 1
(=)
o Leta tournament graph T(V,A4),: V = {xq, x5, ..., X} and
A:{(xi,xj):1Sj<iSn}. °
o Then, for each vertex it holds that d*(x;) =i — 1 (1 <i < n),

and hence T is transitive and has S as score sequence.
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O Tournament Graphs

* Complete directed graph is the graph where each pair of vertices are joined by
a unique arc, where a complete asymmetric graph with no loops 1s a
tournament graph. The out-degrees are also referred as score.

m= () =n(n—1)/2= Tpey d" () = Tyey d* ()

® A tournament graph is called a transitive if it has the transitive orientation
property, i.e., for each pair of arcs (a,b), (b,c) there exist an arc (a,c).
[Transitive Triplets and Cyclic Triplets]

°* Theorem 5:
A non-decreasing sequence S of n non negative integers is graphical score
sequence of a transitive tournament graph iff Sis:0,1,2,...,n — 1
(<)
o Let us assume that tournament graph T of n vertices is transitive
o Itis sufficient to prove that there do not exist two vertices with the same @
scotre.
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O Tournament Graphs

* Complete directed graph is the graph where each pair of vertices are joined by
a unique arc, where a complete asymmetric graph with no loops 1s a
tournament graph. The out-degrees are also referred as score.

m= () =n(n—1)/2= Tpey d" () = Tyey d* ()

® A tournament graph is called a transitive if it has the transitive orientation
property, i.e., for each pair of arcs (a,b), (b,c) there exist an arc (a,c).
[Transitive Triplets and Cyclic Triplets]

* Theorem 5:
A non-decreasing sequence S of nnon negative integers is graphical score
sequence of a transitive tournament graph iff Sis:0,1,2,...,n — 1

(<)
o Let us assume that there exist the arc (xl-, xj) and let the set N (x;).
o Since there exist the arc (xi, xj) and the exist arc (X, Xj) for each vertex °

Xy € N+(xj), it is implied that there exist arc (x;, X).
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O Tournament Graphs

* Complete directed graph is the graph where each pair of vertices are joined by
a unique arc, where a complete asymmetric graph with no loops 1s a
tournament graph. The out-degrees are also referred as score.

m= () =n(n—1)/2= Tpey d" () = Tyey d* ()

® A tournament graph is called a transitive if it has the transitive orientation
property, i.e., for each pair of arcs (a,b), (b,c) there exist an arc (a,c).
[Transitive Triplets and Cyclic Triplets]

* Theorem 6:
A non-decreasing  sequence of Mm  non  negative  integers
S:dq,d,, ..., ddn, ddn+1 —1,...,d,—1 — 1 is a graphical sequence of scores.

* Theorem 7 (H.G. Landau 1953):
A non-decreasing sequence of n non negative integers S: d4,d5, ..., d, is a
graphical sequence of scores 7ff for each integer j (1 < j < n) it holds: °

J_ d; = (J), where the equality holds for j = n.

i=
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O Directed Paths and Cycles

* A path in a digraph between two vertices § and t is a sequence of vertices
such that for any consecutive pair of vertices U and vV to exist the arc (U, v)
(forward-arc) or the arc (v, u) (backward arc).

* A directed path is consisted only by forward arc

* A connected digraph D is Eulerian if there exist a directed circuit containing
each arc of D.

* In order for a digraph D to be Eulerian it must:
o be strongly connected
o not contain sources and sinks, i.e., to not contain vertices with in-(resp. out-)
degree equal to 0.

If the graph is unilateral and does not contain sources or sinks, then it

contains an open Eulerian trace. e
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O Directed Paths and Cycles

* Theorem 8 (Ghouila-Houri, 1960):
A strongly connected digraph is Eulerian 7ff1t 1s balanced.

* Corollary:
A strongly connected digraph has an Eulerian trace if there exist two vertices
vand u such that d~(v) = d*(v) + 1and d~(u) = d*(u) + 1, while for
any other vertex w it holds d~(w) = d*(w).

* A connected digraph D is Hamiltonian (resp. semi-Hamiltonian), if there exist
a directed cycle (resp. path) containing every vertex of D.

* Theorem 9:

A strongly connected digraph D of n vertices is Hamiltonian if d™(v) >
and d*(v) > % for each vertex v € V(D)

NS
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O Directed Paths and Cycles
* Theorem 10 (Redei, 1934):

Every tournament graph has a Hamiltonian path, 1.e., it 1s semi-Hamiltonian

* Theorem 11 (Harray and Moser, 1966):
Every strongly connected tournament graph of n = 3 vertices has cycles of
length [ = 3,4, ...,n (i.e., it is Hamiltonian)

* Theorem 12 (Roy, 1967 and Gallai, 1968):
A digraph D contains directed path of length x — 1.

Corrolary:
Every tournament graph has a Hamiltonian path.
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o DFS on Directed Graphs

® The DFS algorithm is similar to directed graphs except that produced edges.
are classified into 4 sets:

o The set T of the edges contained in the trees of the forest and are called
tree-edges.

o The set B of the edges called back-edges and join descendant vertices to
their ancestors.

o The set I of the edges called forward-edges and join ancestral vertices
to their descendant .

o The C set of edges called cross-edges and have no ancestor-descendant
relationship
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o DFS on Directed Graphs

* Theorem 13:

If during the depth first search of a directed graph a cross-edge (u,v)
is produced, then it holds: dfi(u) > dif (v)

o Suppose dfi (u) <dfi (v), visiting vertex U before vertex v.

o If we assign value in dfi (v) when following the edge (u, v), then the
edge (u, V) is a tree-edge.

o  Otherwise we visit vertex ¥ as the descendant of vertex U, but not as her
son.

o Thus, the edge (U, V) can not be a cross-edge and therefore we coclude
to the contradiction.
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o DFS on Directed Graphs

* Measuring Strong Connectivity deploying DFS:
In order to measure the strong connectivity of a digraph we should deploy
two times the DFS algorithm starting from an arbitrary vertex..

o The first time for each vertex v check the unmarked neighboring vertices
where v is joined only through outgoing arcs.

o The second time, for each vertex v we check the unmarked neighboring
vertices where v is joined only through incoming arcs.

o In order for the graph to be strongly connected, all the vertices there
should be visited in both applications (first and second time) of the
algorithm.
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o Topological Sorting

® A digraph is acyclic if it does not contain directed circles.

® If during the construction of the DFES tree back-edges are resulting, then we
conclude that the graph has a cycle. Conversely, if there is no back-edge the
graph is acyclic.

* Theorem 13:
If the edge (u, v) is a back-edge, then it easily results that the graph has a cycle
regarding the path from vertex v to vertex u.

Let that there exist the cycle (V1 = vy = -+ vV = V).
Let us assume that we first meet the vertex v;, with the min dfi value.
Next, we visit the vertices that have greater dfi values.

o O O O

This way, we will meet the vertex v;_4 that leads to vertex v;, 1.e., to a
Y -1 l b
predecessor of v;, that means that it is a back-edge.
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o Topological Sorting

A digraph 1s acyclic if it does not contain directed circles.

If during the construction of the DFES tree back-edges are resulting, then we
conclude that the graph has a cycle. Conversely, if there is no back-edge the
graph is acyclic.

Topological sorting (or, topological order) of Directed Acyclic Graph is an
arrangement the vertices of the grpah such that if the graph G contains the
arc (U, W), then vertex v appears before vertex W in the topological order.

A topological order of G is an arrangement of its vertices (Vq, Uy, ..., Up):

V,v)€eG i <j.
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o Topological Sorting

® A digraph is acyclic if it does not contain directed circles.

® If during the construction of the DFES tree back-edges are resulting, then we
conclude that the graph has a cycle. Conversely, if there is no back-edge the
graph is acyclic.

* Topological sorting (or, topological order) of Directed Acyclic Graph is an
arrangement the vertices of the grpah such that if the graph G contains the
arc (U, W), then vertex v appears before vertex W in the topological order.

* Algorithm Topological Order with DFS
Input: A DAG D(V,E)
Output: Linearization of the vertices of D
1. Apply DES on DAG D
2. Set to each vertex the value post during their extraction from the stack
3. Sort in descending order the post values.
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O Discovering Strongly Connected Components

* Kosaraju Algorithm for Discovering Strongly Connected Components.

Given a directed graph D
1. Apply DFS enumerating the vertices one-by-one with post values.
2. Construct the directed graph D’ inverting the directions of the arcs of D

3. Apply DFS on D’ starting from the vertex with the max post value.
[if the graph has n vertices then start from the vertex with post value =n]

4. Perform a second DTS pass exhausting the graph

5. Every tree in the resulting DFES forest is a Strongly Connected Component
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O Discovering Strongly Connected Components

* Kosaraju Algorithm for Discovering Strongly Connected Components.

* Algorithm Kosaraju
Input: A digraph D(V, E)
Output: The strongly connected components of D
1. Let S an empty stack.
2. While § does not contain all the vertices
1. Perform DFS starting from an arbitrary vertex v & S
2. Push (the final vertex u (alongside with all the previous vertices by visit-
order)).
3. D" « the resulting graph from the inversion of the arcs of D
4. While S != isEmpty()
1. Pop(v)
DFS(v)
Pop (visited vertices)
Delete visited vertices from D’

B 00 N
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O Discovering Strongly Connected Components

* Tarjan Algorithm for Discovering Strongly Connected Components.

* Algorithm Tarjan SCC
Input: A digraph D(V, E)
Output: The vertices of strongly connected components of D
1. 1 « 1.
2. Truncate the Stack
3. Vve V:
dfi(v) « 0, onStack(v) = false
While dfi(v) == 0 for an arbitrary v : StrongComponent(v)

B

Procedure StrongComponent(v)
1. dif(v) «i, Lv) «dfi(v), i «i+1
2. Push(v),onStack(v) « true
3. VueN (v)
1. If (dfi(u) == 0)
StrongComponent(u),L(v) < min(L(v), L(u))
2. Else If (dfi(u) < dfi(v) AND onStack(v) == true
L(v) « min(L(v),dif (u))
4. If (L(v) ==dfi(v))

Pop(vertices “w” until v), onStack(w) « false.
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O Discovering Strongly Connected Components | M %

* Let Dq,D,, ... Dy the strongly connected components of a digraph D.
We define Condensation of a digraph D, a digraph D* with vertices that
correspond to the strongly connected components of D, while a pair of
vertices of D™ (i.e., two strongly connected components of D) are joined with

an arc (Di, Dj), [ # J,ff a vertex in component D; is adjacent to a vertex in

component Dj.

* Theorem 14:
The condensation D™ of any digraph D is an acyclic graph.

o Let us assume that D* contains a cycle Dy, Dy, ... Dy, D1 (m = 2).
o Letu € V(Dy)andv € V(D,,)

o Since D*contains the path (D1, D;y,) an d the path (D, D7), it is implied
that in the directed graph it is included both path (u, v) and (v, u).

o Thus, vertices U and v belong to the same component D, @

that is a contradiction, which means that D" is acyclic.
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O Discovering Strongly Connected Components

* Let Dq,D,, ... Dy the strongly connected components of a digraph D.
We define Condensation of a digraph D, a digraph D* with vertices that
correspond to the strongly connected components of D, while a pair of
vertices of D™ (i.e., two strongly connected components of D) are joined with

an arc (Di, Dj), [ # J,ff a vertex in component D; is adjacent to a vertex in

component Dj.

* Theorem 15:

Every directed acyclic graph D contains at least one vertex with in-degree=0
and at least one vertex with out-degree=0

o Let that P = (u, ..., v) a path of D of maximum length.

o If vertex u is adjacent to a vertex € P, then there results a cycle that
contradicts to the main assumption

o If vertex u is adjacent to a vertex & P, then there results a path of greater
length.

o Hence the vertex can not be adjacent to any other vertex and it holds a
d~(v) = 0 (similatly , is proven that d*(u) = 0)
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O Problems and Applications

1. Can we transform a road network in a one-way street such as the traffic to
remain as simple as possible 2?7
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O Problems and Applications

1. Can we transform a road network in a one-way street such as the traffic to
remain as simple as possible 2?7

* Transform the road network to a graph:
o Vertices = Crossroads

o Edges = Any pair of vertices are joined if we can move from a crossroad
to another without crossing any crossroads in the middle.
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* Transform the road network to a graph:
o Vertices = Crossroads

o Edges = Any pair of vertices are joined if we can move from a crossroad
to another without crossing any crossroads in the middle.
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O Problems and Applications

1. Can we transform a road network in a one-way street such as the traffic to
remain as simple as possible 2?7

* Transform the road network to a graph:
o Vertices = Crossroads

o Edges = Any pair of vertices are joined if we can move from a crossroad
to another without crossing any crossroads in the middle.

o Is the graph “orientable” »??

M=
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O Problems and Applications

1. Can we transform a road network in a one-way street such as the traffic to
remain as simple as possible 2?7

Robbins,
* Transform the road network to a graph: 1939

o Vertices = Crossroads
o

o Edges = Any pair of vertices are joined if we can move from a crossroad
. . o , . .
to another without crossing any crossroads in the middle.

o Is the graph “orientable” »??
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1. Can we transform a road network in a one-way street such as the traffic to
remain as simple as possible 2?7

Robbins,
* Transform the road network to a graph: 1939

o Vertices = Crossroads
o

o Edges = Any pair of vertices are joined if we can move from a crossroad
. . o , . .
to another without crossing any crossroads in the middle.

(]
o Is the graph “orientable” 22?7 [ if it contains cut-vertices, the answer is “NO” ]
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O Problems and Applications

1. Can we transform a road network in a one-way street such as the traffic to
remain as simple as possible 2?7

Robbins,
* Transform the road network to a graph: 1939

o Vertices = Crossroads
o

o Edges = Any pair of vertices are joined if we can move from a crossroad
. . o , . .
to another without crossing any crossroads in the middle.

(]
o Is the graph “orientable” 22?7 [ if it contains cut-vertices, the answer is “NO” ]
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O Problems and Applications

2. Can we rearrange the sequence of a set of procedures in order to minimize
the time required from a system to process them 2??

® The procedures are denoted by: J1, J2, ..., Jn

® t;j: preparation time from require for transition from J; to J;

B B Jy Jy Js Js
"Ll 0 5 3 4 2 1
Jol1 0 1 2 3 2
312 5 0 1 2 3
Jy |1 4 4 0 1 2
Js!1 3 4 5 0 5
Jo; 14 4 2 3 1 0
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2. Can we rearrange the sequence of a set of procedures in order to minimize
the time required from a system to process them 2??

® The procedures are denoted by: J1, J2, ..., Jn

® t;j: preparation time from require for transition from J; to J;

* Transform the sequence of procedures to a tournament graph
o Vertices = procedures

o Arcs (i,j) — if tij = tj

Ji Ja Js Jy
L0 5 3 4
Jy 11 0 1 2
Js12 5 0 1
Jy |1 4 4 0
Js |1 3 4 3]
Jo 1 4 4 2 3
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2. Can we rearrange the sequence of a set of procedures in order to minimize
the time required from a system to process them 2??

The procedures are denoted by: J1, /3, ..., Jn

® t;j: preparation time from require for transition from J; to J;

Transform the sequence of procedures to a tournament graph
o Vertices = procedures

o Arcs (i,j) — if tij = tj

Find Hamiltonian cycle with less weight (i.e., TSP)

Ji Ja Js Jy
L0 5 3 4
Jy 11 0 1 2
Js12 5 0 1
Jy |1 4 4 0
Js |1 3 4 3]
Jo 1 4 4 2 3
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2. Can we rearrange the sequence of a set of procedures in order to minimize
the time required from a system to process them 2??

The procedures are denoted by: J1, /3, ..., Jn

tij: preparation time from require for transition from J; to J;

Transform the sequence of procedures to a tournament graph

rtices = pr r
o vertices p ocedures ... the graph has a Hamiltonian path!!!
h-=le=>l~=la~>]s—> ]2

o Arcs (i,j) — if tij = tj

* Find Hamiltonian cycle with less weight (i.e., TSP) o
o

Jio S Js Jy Js s
110 5 3 4 2 1
11 0 1 2 3 2
Jsl2 5 0 1 2 3
Jyl1 4 4 0 1 2
J511 3 4 5 0 5
J14 4 2 3 1 0
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3. What 1s the length of the circular sequence such that no subsequences of
T concecutive digits to appear more than once 7?7
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3. What 1s the length of the circular sequence such that no subsequences of
T concecutive digits to appear more than once 7?7

°  With r digits there can be produced 2" discrete subsequences, and hence the
circular sequence has length n = 2".We can construct a graph with 27!
vertices with inscriptions all the possible subsequences of length r — 1 digits
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3.

What 1s the length of the circular sequence such that no subsequences of
T concecutive digits to appear more than once 7?7

With r digits there can be produced 2" discrete subsequences, and hence the
circular sequence has length n = 2".We can construct a graph with 27!
vertices with inscriptions all the possible subsequences of length r — 1 digits

Let that the inscription of a vertex is a1ay ...a,—1 ¢ a; = 0/1. Two arcs are
directed from this vertex to two vertices with inscriptions a,az ...a,-10 and
A03 ... dy_11, respectively. In these two arcs there been placed the
inscriptions a1A,03 ...a,-10 and a;azas ...a,_10, respectively.

-| £ =) £3 24 £5 =1 E7 g i

Q000 [JQﬂl UU_L[ Dll__] 1111 1110 _LlUﬂ 1001
£q 210 11 £12 11 14 £15 E11
0010 0101 1011 0110 1101 1010 0100 1000 |
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3. What 1s the length of the circular sequence such that no subsequences of
T concecutive digits to appear more than once 7?7

°  With r digits there can be produced 2" discrete subsequences, and hence the
circular sequence has length n = 2".We can construct a graph with 27!
vertices with inscriptions all the possible subsequences of length r — 1 digits

® Let that the inscription of a vertex is a1a; ...ar—1 ¢ a; = 0/1. Two arcs are
directed from this vertex to two vertices with inscriptions d,a3 ...a,—10 and
A03 ... dy_11, respectively. In these two arcs there been placed the
inscriptions a1A,03 ...a,-10 and a;azas ...a,_10, respectively.

* Ifay,=a,=az3 == a,_q thenitisaloop.
® Every vertex has in-degree=out-degree=2, and hence the graph is balanced.

®* TFrom Theorem .8 the graph is Eulerian, and further contains path of length

n = 27 arcs. @
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3. What 1s the length of the circular sequence such that no subsequences of
T concecutive digits to appear more than once 7?7

°  With r digits there can be produced 2" discrete subsequences, and hence the
circular sequence has length n = 2".We can construct a graph with 27!
vertices with inscriptions all the possible subsequences of length r — 1 digits

® Let that the inscription of a vertex is a1a; ...ar—1 ¢ a; = 0/1. Two arcs are
directed from this vertex to two vertices with inscriptions d,a3 ...a,—10 and
A03 ... dy_11, respectively. In these two arcs there been placed the
inscriptions a1A,03 ...a,-10 and a;azas ...a,_10, respectively.

* Ifay,=a,=az3 == a,_q thenitisaloop.
® Every vertex has in-degree=out-degree=2, and hence the graph is balanced.

® The last r — 1 digits of an arc equal the r — 1 first digits of the next arc.
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3. What 1s the length of the circular sequence such that no subsequences of
T concecutive digits to appear more than once 7?7

°  With r digits there can be produced 2" discrete subsequences, and hence the
circular sequence has length n = 2".We can construct a graph with 27!
vertices with inscriptions all the possible subsequences of length r — 1 digits

® Let that the inscription of a vertex is a1a; ...ar—1 ¢ a; = 0/1. Two arcs are
directed from this vertex to two vertices with inscriptions d,a3 ...a,—10 and
A03 ... dy_11, respectively. In these two arcs there been placed the
inscriptions a1A,03 ...a,-10 and a;azas ...a,_10, respectively.

* Ifay,=a,=az3 == a,_q thenitisaloop.
® Every vertex has in-degree=out-degree=2, and hence the graph is balanced.

* Obtaining the first digit of each arc of this path, the required sequence is
constructed, as there do not exist arcs with the same inscription. e




